
AMQP 1.0 Discussion Paper Broker Behaviour

AMQP 1.0 Discussion Paper
Broker Behaviour

June 29, 2010

AMQP 1.0 Discussion Paper 1.0 - Unpublished Material
Page 1 of 23

AMQP 1.0 Discussion Paper Broker Behaviour

Table of Contents

1 Overview..3
1.1 What is a broker?..3
1.2 Relation to the other books...3

2 Client to broker protocol..5
2.1 Addresses..5
2.2 Messages...5

2.2.1 Message format...5
2.2.2 Ordering..5
2.2.3 Priority...6
2.2.4 Message durability...6
2.2.5 TTL...6

2.3 Links..6
2.3.1 Establishing and closing links..6
2.3.2 Re-establishing links..8
2.3.3 Link lifetime...8
2.3.4 Errors...8
2.3.5 Outcomes and settlement...9
2.3.6 Delivery mode...9
2.3.7 Transfer failures...9
2.3.8 Publishing..10

2.3.8.1 Delivery mode..12
2.3.9 Flow control...12
2.3.10 Filtering...12
2.3.11 Subscribing and consuming...12

2.3.11.1 Subscribers...13
2.3.11.2 Delivery mode..14
2.3.11.3 Consumers..14

2.3.12 Browsing..15
2.3.13 Dynamic sources and targets..15

3 Broker transactions..16
3.1 Transactional publish..16
3.2 Transactional accept...18
3.3 Transactional acquire..20

AMQP 1.0 Discussion Paper 1.0 - Unpublished Material
Page 2 of 23

1 Overview

1.1 What is a broker?
A broker is, generally speaking, a trusted intermediary. For a broker supporting AMQP
1.0 (henceforth just “broker”) this entails

• taking responsibility for messages on behalf of clients

• acting as a transaction resource, and possibly transaction co-ordinator, and

• routing and distributing messages

An AMQP broker is also a computer system, and as such, has operational aspects, some
of which may be usefully standardised. For example, means of configuration and
monitoring are set out in the Management specification.

Implementers need the behaviour of a server to be specified such that AMQP 1.0 can be
retrofitted to legacy messaging solutions, or incorporated in non-traditional solutions.
Applications need behaviour to be tightly-enough specified that they can reliably write
useful applications that can be counted on to function correctly. These needs motivate
our definition of a client to broker protocol, outlining requirements that can
characterise the behaviour of existing systems, and allow general purpose AMQP 1.0
clients to interact with them; and, requirements for broker transactions in very much
the same vein.

1.2 Relation to the other books
Books II and III define a type system and codec; an abstract protocol, using the type
system, for transferring messages between peers and agreeing on the outcome (the
“transfer protocol”); and a concrete protocol, using the codec, over TCP. Book IV
introduces types for declaring behaviour at link sources and link targets, and specific
outcomes useful for general-purpose messaging between peers. Book V specifies types
for addressing transactional resources, and for declaring and discharging transactions.

This book adds to the messaging model the notion of a broker, and a model for trusted
intermediation of message transfer. It supplements the messaging model with
requirements for application and operational concerns; for example, persistence of
messages, and ordering semantics.

In terms of the books mentioned above, a broker provides an TCP/IP server to service
Connections, and keeps track of Sessions and Links created by the client. It resolves
sources (for outgoing links) and targets (for incoming links), and implements a protocol
specialised to client-broker interactions. It may also act as a transactional resource for
certain operations.

A broker may also provide services for applications that are orthogonal to the messaging
model; for example, authentication and federation. These are not discussed here.

Book VII – Messaging brokers

2 Client to broker protocol
The client to broker protocol covers the common scenarios which clients and brokers are
communicating using AMQP 1.0. Central to these scenarios is the idea of the broker
taking responsibility for messages on behalf of a downstream consumer, and its
implications of persisting and buffering messages.

Where there are requirements of brokers, these generally follow the maxim that a broker
must not lie. In other words, where the protocol defines types for declaring behaviour,
the broker must use them to accurately indicate its behaviour. A broker may however
tolerate, to some extent, clients misrepresenting or missing out information.

Many requirements also follow a “fail fast” principle; that is, any difference in the
expectation of the client and what the broker is able to provide must be signalled by
raising an error as soon as possible, as it indicates a mistake in the application logic or
deployment.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119.

2.1 Addresses
A broker MUST resolve addresses given in link targets and link sources consistently with
addresses used elsewhere – e.g., in a management interface. This is to ensure, for
example, that an application can use an address generated by the broker as a reply-to
header and expect any replies to appear along a link sourced at the address.

The simplest, though by no means only, interpretation of this is that source and target
names are in a single namespace and each broker node has a single name by which it
can be addressed.

However, we may also wish to hide the internal structure at the broker, and give nodes
aliases, which can then be shared. In this case, it is the alias that is used as the address.

In circumstances in which the broker is obliged to generate a name, the name SHOULD
be randomly generated; i.e., it should be hard to guess.

2.2 Messages
2.2.1 Message format
Book IV describes a message format that includes transport headers (important for
message delivery) and message properties (immutable properties of the message). In
general it is not necessary to discuss these here, other than to require that brokers MUST
NOT change message properties; specific properties with implications for brokers are
mentioned in the sections below.

A broker MAY be tolerant of malformed messages; e.g., may choose to accept messages
missing sections, so far as it does not hinder the broker's operation. However, the broker
MUST supply well-formed messages for clients downstream.

A broker MUST raise a session error for messages that misrepresent sections; e.g., by
having incorrect format codes.

2.2.2 Ordering
Taking responsibility for messages on behalf of peers downstream implies FIFO buffers.
However, there is no inherent requirement of ordering, except to say: Putting aside re-
transfers, a broker SHOULD propagate messages over links in the order in which they are
transferred from a producer.

2.2.3 Priority
The message header priority indicates that a message may “overtake” other messages
with lower priority; i.e., be delivered before despite being published after.

Where priority is supported, messages MUST be ordered, for whichever guarantee of
ordering is given, within equivalent priorities. Equivalence for priorities is described in
book IV.

For example: Message A is sent before B is sent before C. If A, B, C are of equivalent
priority, then they must be ordered A, B, C. However, if B and C are equivalent and
higher priority than A, then the messages must be ordered either A, B, C or B, C, A or B,
A, C.

2.2.4 Message durability
A broker should ensure no message is lost, unless it knows it does not need to. Sending a
non-durable message effectively means “Please trade recoverability for speed”; it is a
hint that the broker can optimise for this case, e.g., by settling an outcome straight
away, avoiding using durable storage, and not requiring explicit settlement from
consumers.

Brokers SHOULD “safely” store durable messages before settling transfers, in particular if
the intermediary cannot deliver the message onwards immediately. A working definition
of “safe” is “durable messages will survive software restarts”.

2.2.5 TTL
Brokers SHOULD respect ttl supplied in message headers. This means that a message
must not be transferred along outgoing links after the TTL has elapsed; the message MAY
be discarded at this point.

If a transmit-time is not also supplied, the broker is free to reckon TTL expiry from the
time at which it received the message. If a transmit-time is supplied, a clock local to the
broker MAY be used as an approximation for reckoning the TTL expiry.

2.3 Links
2.3.1 Establishing and closing links
The attach and detach frames are assertions of the link state as well as instructions. The
value in the local field of these frames indicates the state known at the sender; the
remote field indicates the sender's knowledge of the state at the receiver. This implies
some patterns in how the protocol is used to establish and close links:

Field values Meaning

local=(A, B), remote=NULL "There is a link here". Used to establish a link.

local=NULL, remote=(X, Y) "There is no link here". Used to close a link, destroying it.

local=NULL, remote=NULL "There is no link here, and I know of no link there". This is
probably a reply to local=NULL, remote=(X, Y), or it may
be used by a client that has forgotten the remote state.

local=(A, B), remote=(X, Y) “There is a link here and I know of a link there”. Usually
sent as a response to local=(X, Y), remote=NULL, or to re-
establish a link.

Table 1: Meaning of null in local and remote fields

If a broker cannot honour a link as specified by a client, it MUST respond with either a
null target in local (for links in which it is the receiver) or a null source in local (for links in

which it is the sender). This is referred to as “refusing a link”, and should be regarded by
the client as a failure to establish the link.

When establishing a new link, some fields are expected to be supplied definitively by the
client; some are expected to be supplied by the client as an indication of its requirements
of the broker; and some must be left null for the broker to supply definitively.

Field Supplied by

options May be supplied by the client. For some values, the broker may
refuse the link; the broker may not add values.

name Must be supplied by the client.

handle Must be supplied by both peers (and will in general be different).

flow-state unsettled-lwm Must be supplied by client to indicate its
current known state; may be null for a new,
receiving link.

session-credit Must be given by client to indicate its current
known state.

transfer-count Must be given by a sending client; may be
omitted by a receiving client if the link is
new. The broker must either echo or supply a
value.

link-credit Must be omitted by a sending client; may be
supplied by a receiving client.

available May be omitted.

drain May be supplied by a receiving client. If
omitted, the value is assumed to be “false”.

role Must be supplied and consistent with local and remote.

local source Must be supplied by a sending peer for a new link;
may be omitted otherwise. For a sending client,
default-outcome and outcomes must be supplied;
other fields may be left null.

target Must be supplied by a receiving peer. A receiving
client may leave any field null.

The broker may refuse links based on the value supplied in local
by the client.

remote Must be supplied by the broker and echo the local given in the
request.

durable May be supplied by the client. If absent, must be supplied by the
broker.

expiry-policy May be supplied by the client. If absent, must be supplied by the
broker and be the value “session”.

timeout May be supplied by the client. If absent, must be supplied by the
broker and be the value “0”.

unsettled May be supplied by the client if the link is not new.

transfer-unit May be supplied by a sending client and in this case may be
overruled by the broker1. May be supplied by a receiving client; if
absent, must be supplied by the broker.

max-message-size As for transfer-unit.

error-mode May be supplied by the client; if absent, must be supplied by the
broker.

properties May be supplied by either peer and may be different.

Table 2: Link establishment fields

2.3.2 Re-establishing links
A client may wish to change the parameters of a link without closing it; e.g., to change
the filter-set of the link. To do so, the client sends detach with the old parameters, then
attach with the new parameters (in the example, a source with the new filter set, in the
local field). The broker may of course refuse the link.

2.3.3 Link lifetime
In some circumstances a broker will need to close links itself; for example, if the source
or target is destroyed. A client, therefore, must be prepared to receive detach frames
from the broker. This is an exception to the general pattern of the client instructing the
broker.

2.3.4 Errors
Errors MUST result in a link detach, session end or connection close.

Specifically,

• A broker MUST respond to malformed frames by sending close with an
appropriate error and closing the underlying socket.

• A broker MUST respond to errors in begin by closing the session; i.e., sending end
with an appropriate error, waiting for the corresponding end from the client.

How a broker responds to errors in attach, transfer, flow-control and disposition depend
on the error-mode of the associated link. If the error-mode is end, the broker MUST close
the session, i.e., send end and wait for the corresponding end; and if detach, the broker
MUST detach the link.

1transfer-count is calculated using the value of transfer-unit. In some circumstances,
clients may wish to send attach then transfer without waiting for a corresponding attach,
and thereby will not have the authoritative value for transfer-unit with which to calculate
the transfer-count sent with the transfer. In this case, the client SHOULD send null for the
transfer-unit; a broker MAY then choose to honour the transfer, supply the transfer-unit
with its response, and expect the client to recalculate the transfer-count subsequently.

Invoking the process described immediately above is referred to in the following as
“raising an error”.

2.3.5 Outcomes and settlement
A broker in general acts to take responsibility for messages by settling outcomes; either
from senders, by accepting transfers with a settled state, or from receivers, by settling
the posited outcome.

Usually an outcome will be settled by advancing the low water mark (unsettled-lwm, sent
in transfer and flow). In some circumstances an explicit disposition exchange is required,
giving the outcome and asserting that the transfer is settled. A disposition MAY be sent if
a state is not given in the transfer; otherwise, the outcome is that given as the default-
outcome.

A peer MUST treat conflicting statements of the outcome for a transfer as an error. For
example, if a client sends an accepted outcome then a rejected outcome for a particular
transfer, the broker must close the link or session, reporting an error; and vice versa.

The exception to this is the provisional outcome given for a transfer in the scope of a
transaction, which may change once the transaction is discharged.

2.3.6 Delivery mode
In certain circumstances a client may need to indicate to the broker its required delivery
semantics, where these are not implied by either the link default-outcome and outcomes
fields, or the transfer state and settled fields. The client may also wish to explicitly allow
or deny the broker this assumption. To do this, the client uses one of the options
“delivery-mode” or “opt-delivery-mode”, both symbols used as keys in the options map
of attach.

Using “delivery-mode” as the key forces the broker to support the mode or refuse the
link. Using “opt-delivery-mode” indicates that the client will cope if the mode is not
followed. Both may be supplied for a link. In the following delivery-mode, unquoted,
refers to an link established with the “delivery-mode” option specifically.

The possible values for both keys are the following symbols: “at-most-once”, “at-least-
once”, “exactly-once”. The requirements indicated by each value will be discussed in
2.3.8.1 and 2.3.11.2.

2.3.7 Transfer failures
The messaging model admits varieties of responsibility transfer. Central to this is the
idea of settlement; that is, agreement on a particular outcome for a transfer. However,
the receiver of a link can disappear without responding and not come back (i.e., time out)
without the outcome being settled; we need to account for what happens to messages
that have been committed for transfer over that link, but which are not known to have
been transferred successfully because the outcome has not been settled.

The source type in book IV defines an default-outcome field, which gives the assumed
outcome for transfers left unsettled.

Generally speaking, there are four options for dealing with unsettled messages:

1. Try to deliver the message to some other link from the node, or re-queue it;
the default-outcome is released

2. Send the message to a “Dead letter queue”; default-outcome of reject

3. Return the message to the publisher, given a suitable return route; default-
outcome of reject

4. Abandon the delivery; in this case, the default-outcome is accepted.

A client can supply null in default-outcome, indicating that it agrees with whichever
default-outcome the broker supplies; or, it can supply a default-outcome to indicate its
expected behaviour.

A broker MUST enforce its policy or configuration where present by refusing links that do
not agree on the default-outcome. Such a policy or configuration can admit more than
one possible default-outcome; for example, the broker might allow a default-outcome of
release for consumers that require “at least once” delivery, or accept for consumers
requiring “at most once” delivery.

2.3.8 Publishing
Publishing a message requires a link established with the client as sender and broker as
receiver. Broadly speaking, there are two styles of arranging this:

• one-off; i.e., establishing a link and transferring one (or perhaps a small handful)
message, then closing the link; and,

• continuous, that is, establishing a long-lived link and transferring many messages.

It is desirable, for the first scenario especially, to be able to establish a link, transfer a
message, and possibly even close the link without having to wait for a response from the
broker. For this reason, a broker MAY choose to tolerate incorrect flow state for transfers
along new links, as described in 2.3.1.

If a client wishes to receive acknowledgement for a transfer, it is enough to supply a
state (or rely on the default outcome) and the value false for settled. The broker is then
obliged to settle the transfer.

Attach(options=None,
 name="publish-link-1234",
 handle=4,
 flow_state=FlowState(
 unsettled_lwm=1,
 session_credit=10,

Session-level low water mark. Here
we are starting from scratch, so we
say the LWM is the next transfer-id.

 transfer_count=0,
 link_credit=None,
 available=None,
 drain=False),

 role=False,
 local=Linkage(
 source=Source(
 outcomes=[“amqp:accept:map”],
 default_outcome=Accept()),

We are a sender.
Here we are saying that the broker
can simply advance the LWM to
indicate that it has accepted
messages, since there is only one
possible outcome. This is
effectively “at most once”, since
a dropped connection will settle
transfers to the default outcome.

 target=Target(address="my_topic")),
 remote=None,

Where we would like to publish to.

 transfer_unit=None,
 max_message_size=0,
 error_mode="detach")

We'll be told by the broker when it
responds.
If do something wrong, the link
should be
 detached by the broker.

Attach(options=None,
 name="publish-link-1234",
 handle=5,
 flow_state=FlowState(
 unsettled_lwm=1,
 session_credit=10,
 transfer_count=0,

The broker has its own handle, which
we have to recognise.

We told the broker these, and
nothing has
 been sent yet, so it

remains the
 same.

 link_credit=10),
 role=True,

The broker gives us some initial
credit, with which to transfer
messages.

 local=Linkage(Source(
 outcomes=[“amqp:accept:map”],
 default_outcome=Accept()),
 target=Target(address="my_topic")),
 remote=Linkage(
 source=Source(
 outcomes=[“amqp:accept:map”],
 default_outcome=Accept()),
 target=Target(address="my_topic")),

The broker agrees on the linkage.
If it did not, it would have to
refuse the link by giving a null
target here.

 expiry_policy="session",
 timeout=0,
 unsettled=None,
 transfer_unit=0,
 max_message_size=0,
 error_mode="detach")

The broker tells us its defaults
where we have not supplied values.

We now have a link, targeting
"my_topic". We use the handle 4 and
the broker uses the handle 5.

Transfer(options=None,
 handle=4,
 flow_state=FlowState(
 unsettled_lwm=1,
 session_credit=9,
 transfer_count=1,

We'll transfer a message.
This is our alias for the link.

The LWM refers to this transfer
By sending an unsettled transfer,
we are reducing the session credit.

 link_credit=9,
 available=None,
 drain=False),
 delivery_tag="delivery123",
 transfer_id=1,

We reduce our credit by the “size”
of this transfer.

delivery-tag is arbitrary, but
transfer-id is a serial number. It
corresponds to our LWM above.

 settled=False,
 state=None,
 resume=False,
 more=False,
 aborted=False,
 batchable=False,

We will be waiting for the broker
to settle this. We don't need to
supply a state, since there is only
one outcome possible and we're not
using a transaction.

 fragments=[...]) # Our message (elided here)

The broker is obliged to respond as
soon as possible, since we said
batchable is false. It does not need
to send a disposition frame, though;
it can get away with a flow frame.

Flow(handle=5,
 flow_state=FlowState(
 unsettled_lwm=2,
 session_credit=10,
 transfer_count=1,
 link_credit=9))

The broker's handle for the link

The broker advanced the LWM to
indicate that it considers the
transfer above to be settled. We now
consider the transfer to have the
default-outcome.

It also put the session credit back
up to 10, since a transfer has now
been settled.

Table 3: Settling a transfer with the low water mark

If the transfer has batchable as true, the client is indicating that the broker can delay
before settling, in order to settle many transfers at once. If batchable is false, the broker
SHOULD settle the transfer as soon as possible, as this could indicate for example that
the client is blocking on the transfer being settled.

In any case, the broker SHOULD NOT hold up a publisher by exhausting its session credit
without settling transfers.

In some circumstances the client may also wish to require the broker to send a
disposition frame; for instance, if there is a choice of outcome for the broker to make. In
this case, the transfer will have a state with no outcome given, and the client should
specify the outcomes during link establishment.

Often, however, a publisher will not require acknowledgement from the broker, in which
case it will supply an outcome and assert that it is settled in the transfer frame. This may
or may not advance the low water mark.

2.3.8.1 Delivery mode

The delivery-mode values for publishing are “exactly-once” and “at-least-once”.

If a delivery-mode of “exactly-once” is supported, the broker SHOULD de-duplicate
transfers as identified by delivery-tag. The broker MAY ask the client for confirmation of
transfer outcome (as explained in book III). The client SHOULD transfer with an unsettled
outcome.

If a delivery-mode of “at-least-once” is supported, the broker SHOULD NOT indicate an
unsettled outcome for a transfer to the client; i.e., it should not ask the client for
confirmation of transfer outcome. The client SHOULD transfer with an unsettled outcome.

2.3.9 Flow control
Book III defines a credit-based flow control mechanism. For a broker there are two
contracts implied: for incoming links, and for outgoing links.

The contract with regard to incoming links is that the broker MUST NOT issue more credit
than it can honour. How the broker distributes credit among incoming links will differ
depending on policy and configuration; however, for a broker to participate reliably in an
AMQP network it MUST NOT, taken across all incoming links, over-represent its capacity
for receiving messages.

However, a broker MAY choose to tolerate clients that do not strictly follow flow control.
In particular, a broker can deliberately omit transfer-count in flow-state, to indicate to a
producer that it is not currently enforcing flow control.

With regard to outgoing links, a broker must fulfil its obligations as instructed by the
client. In other words, it MUST NOT transfer more messages over a link than it has credit
on the link.

2.3.10Filtering
Book IV introduces filters and filter sets. In general, brokers are not required to support
filters. A broker MUST refuse an outgoing link if it cannot support the filter set given
when establishing a link.

2.3.11Subscribing and consuming
Book IV defines distribution-mode, which is used to indicate the desired (by a client) or
determined (by a broker) behaviour of a source.

A broker is not in general required to support the distribution-mode supplied by a client;
if the broker will not fulfil a distribution-mode supplied by a client, it MUST refuse the link.

Commonly, for a given address the broker will either have a policy of distributing to all
outgoing links, in which case it accepts sources with copy; or, a policy of distributing
each message to one outgoing link exclusively, in which case it accepts sources with
move. Elsewhere these are called “topics” and “queues” respectively; we will adopt
these terms for convenience.

To distinguish between the kinds of outgoing link, we will say that topics have
subscribers, and queues have consumers. These are also used, where unambiguous, to
refer to the client establishing such a link.

2.3.11.1 Subscribers

Subscribers use outcomes as transfer acknowledgement; as such, only accept has a
defined meaning as a default-outcome, which is that the transfer in question must not be
made along the link again. The semantics in the case of reject, release and modified
outcomes is left undefined.

There are two modes to settle a transfer; in the first, the subscriber wishes to explicitly
acknowledge each transfer with a disposition. In the second, the subscriber will
acknowledge transfers by advancing the unsettled-lwm in flow frames.

Supplying a single outcome in the outcomes field of attach means the broker can assume
that state for messages. In this scenario, the broker SHOULD transfer messages with the
indicated state; the subscriber can either send a disposition frame or simply advance the
unsettled-lwm in a flow frame in order to acknowledge the transfer.

It is worth observing that a broker can go further and transfer with a settled outcome if,
for example, the outcomes for a link consists only of “amqp:accept:map” and its default-
outcome is accept, and the link is bound to the lifetime of a session.

The following pseudo-transcript illustrates subscription. An open connection and session
are assumed.

Attach(name="subscribe-link-1234",

 handle=15,

 role=True, # We are the receiver.

 local=Linkage(target=None, # The target is unimportant.

 source=Source(

 address="my_topic", # Names the source

 dynamic=None, # It's a well-known address.

 distribution_mode="copy", # We are expecting this to be a
subscription

 default_outcome=Accept(), # Messages implicitly settled should be
accepted, and

 outcomes=["amqp:accept:map"])), # we will only ever accept transfers.
The broker can settle transfers
immediately, since there is only one
possible outcome for a message.

 remote=None) # (For the broker to supply)

Attach(name="subscribe-link-1234",

 handle=11, # The broker's handle for the link.

 role=False, # The broker is the sender.

 local=Linkage(target=None, # The broker confirms the link target

 source=Source(
 address="my_topic",

and source, to show the link is
established

 dynamic=None,

 distribution_mode="copy",

 default_outcome=Accept(),

 outcomes=["amqp:accept:map"])),

 remote=Linkage(target=None, # This is an echo of the local

 source=Source(address="my_topic", # field supplied by the client.

 dynamic=None,

 distribution_mode="copy",

 default_outcome=Accept(),

 outcomes=["amqp:accept:map"])),

Table 4: Subscribing

2.3.11.2 Delivery mode

The delivery modes for subscribers are “at-most-once” and “at-least-once”.

If a delivery mode of “at-most-once” is supported, the broker SHOULD assume transfers
are settled with the default-outcome when sending.

If a delivery-mode of “at-least-once” is supported, the broker MUST NOT assume that
transfers are settled when sending. The client MAY respond with an unsettled outcome,
indicating that it requires confirmation of the outcome from the broker.

2.3.11.3 Consumers

Consumers use outcomes as instructions. Specifically,

• accepted instructs the broker to not transfer the message again;

• release instructs the broker to redistribute the message;

• reject instructs the broker to invoke rejected message handling e.g., sending
the message to a dead letter queue;

• modified instructs the broker to reconsider the message, with header
alterations, for distribution.

Brokers MUST indicate the outcomes available in the outcomes field of the source, when
responding to the client during link establishment.

A client MAY itself specify a set of the outcomes during link establishment; in this case,
the client is specifying that it will only use certain outcomes. If this is not a subset of
those supported by the broker, it MUST refuse the link. If it is, the broker MUST echo the
outcomes in its response.

If the client then gives an outcome not in the set, the broker MUST raise an error.

The following pseudo-transcript shows a consumer establishing a link. As above, it
assumes an open connection and session.

Attach(name="consume-link-1234",

 handle=15,

 role=True, # We are the receiver.

 local=Linkage(target=None, # The target is unimportant.

 source=Source(

 address="my_queue", # Names the source

 dynamic=None, # It's a well-known address.

 distribution_mode="move", # We are expecting to be a
de-queueing messages

 default_outcome=Release(), # Messages implicitly settled should be
released; however,

 outcomes=["amqp:accept:map"])), # we will only ever accept transfers.
The broker can assume “accept” as the
state, but cannot immediately settle
transfers.

 remote=None) # (For the broker to supply)

Attach(name="consume-link-1234",

 handle=11, # The broker's handle for the link.

 role=False, # The broker is the sender.

 local=Linkage(target=None, # The broker confirms the link target

 source=Source(
 address="my_queue",

and source, to show the link is
established

 dynamic=None,

 distribution_mode="move",

 default_outcome=Release(),

 outcomes=["amqp:accept:map"])),

 remote=Linkage(target=None, # This is an echo of the local

 source=Source(address="my_queue", # field supplied by the client.

 dynamic=None,

 distribution_mode="move",

 default_outcome=Release(),

 outcomes=["amqp:accept:map"])),

Table 5: Consuming

2.3.12Browsing
Various use cases require the ability to receive messages from a node without interacting
with its distribution of messages. This is partially encoded in the protocol by a link source
specifying a distribution-mode of copy (when it would otherwise be expected to be
move); move meaning that the link is considered when distributing messages, and copy
meaning in this case that it is considered in addition to distributing messages.

The semantics for outcomes are the same as for other links specifying copy in the
source.

2.3.13Dynamic sources and targets
A broker may support the creation of dynamic sources or targets, or both. If so, a client
MAY use the dynamic field to request such a source or target. Aside from the lifetime
given in dynamic, the nature of the source or target is undefined.

The lifetime defines the earliest point at which the dynamic source or target may be
destroyed. Where the lifetime is bounded by an explicit action of the client (e.g., link
closure using detach), the destruction SHOULD be enacted before the broker responds to
the action (in this example, before it sends the corresponding link detach).

3 Broker transactions
A broker MAY act in the role of transactional resource manager, enacting units of work
durably and atomically. What “durably” entails depends on the broker policy or
configuration and the source or target; a working principle is that the relevant state has
been “safely” stored; e.g., to disk. “Atomically” has the usual sense, that is, the entire
unit of work is completed or none of it is.

A broker MAY also act as a transaction co-ordinator if it at least supports local
transactions. In this case it MUST recognise the transaction coordinator target as defined
in book V. When establishing a link to the coordinator target, a client MAY omit the
source field.

Settlement and transactions are related; peers MUST NOT settle an outcome before the
transaction with which it is associated has been discharged. In protocol terms, this
means that no transfer state can have both be settled and have a txn_id, except for the
transfer state of a transaction discharge.

A broker MAY indicate a provisional outcome in the context of a transaction by sending
disposition with an unsettled transfer-state. If this is done, the broker MUST honour that
indication with its settled outcome once the transaction is discharged, or fail to discharge
the transaction.

Thus, if a receiver sends an unsettled transfer-state in the context of a transaction, it
MUST NOT be treated as part of a settlement exchange; e.g., the sender MUST also wait
until the transaction is discharged before settling transfers.

In the case of a failed transaction, it is understood that associated transfers and
dispositions are rolled back. It is not necessary to exchange transfer-state. Flow-control
state is not rolled back; e.g., transfers that are part of a failed transaction still consume
credit.

3.1 Transactional publish
In this example we show a protocol exchange for a client transactionally publishing to a
broker. The connection and session establishment are assumed, and flow control and
other irrelevant details are elided.

Generally the frames are asynchronous; however, there are certain points at which the
client has to wait for a response in order to proceed; e.g., when declaring a transaction,
the client as transaction controller needs the transaction ID from the response in order to
use it with the transfer that follows. Below, the frames are shown in request/response
order to aid reading.

First we establish a link to
the transaction coordinator.

Attach(name="txn-link-1234",

 handle=4, # Our handle for the link.

 role=False,
 local=Linkage(
 source=None,

We are the sender.

 target=Coordinator(
 capabilities=["amqp:local-transactions"])),
 remote=None)

We are asking for a link to
the transaction coordinator,
and for it to support local
transactions.

Attach(name="txn-link-1234",
 handle=5,

The broker echoes the name,
and gives its handle.

 role=True, # Broker is the receiver.

 local=Linkage(
 source=None,
 target=Coordinator(
 capabilities=["amqp:local-transactions",

The broker says that it
does have a transactional
coordinator, and that it
supports these transactional

 "amqp:distributed-transactions",
 "amqp:promotable-transactions"])),

modes.

 remote=Linkage(
 source=None,
 target=Coordinator(
 capabilities=["amqp:local-transactions"])))

The broker echoes back our
statement of the linkage.

Now we have a link to the
transaction co-ordinator, with
handle 4 for send and handle 5
for receive.

Transfer(handle=4, # Our handle to the coordinator

 delivery_tag="begin321", # This is arbitrary

 transfer_id=16, # This is a serial number alias

 settled=False,
 state=TransferState(outcome=Accepted()),

We expect confirmation
from the broker.

 fragments=[Fragment(
 format_code=4,
 first=True,
 last=True,
 payload_offset=0,

amqp-data
NB: in general, payloads are
encoded and sent as a binary

 payload=Declare(
 global_txn_id=None))])

Let the broker create a local
transaction ID

Disposition(role=True,
 extents=[Extent(
 first=16,
 last=16,

The broker is the receiver

Alias of transfer just made

 handle=5, # The broker's handle

 settled=True, # The transfer state is decided

 state=TransferState(
 outcome=Accepted(),
 txn_id="txn1234"))])

The declaration is
successful, and the created
transaction ID is “txn1234”

We can now use that ID to
associate frames with the
transaction.

Attach(
name="my-link-1234",
 handle=11,
 role=False,
 local=Linkage(
 source=Source(outcomes=[“amqp:accepted:map”],
 default-outcome=Accept()),
 target=Target(
 address="my_topic")),
 remote=None)

Establish a link to where we
want to publish a message

Attach(name="my-link-1234",
 handle=12,
 role=True,
 local=Linkage(
 source=Source(outcomes=[“amqp:accepted:map”],
 default-outcome=Accept()),
 target=Target(address="my_topic")),
 remote=Linkage(
 source=Source(outcomes=[“amqp:accepted:map”],
 default-outcome=Accept()),
 target=Target(address="my_topic")))

Transfer(handle=11, # Our handle for this link

 delivery_tag="message123",
 transfer_id=17,

Arbitrary;
serial number alias for above

 settled=False, # We want an ack from the broker

 state=TransferState(txn_id="txn1234"), # Supply the transaction ID.

 fragments=[...]) # (Our message, in sections)

At this point, our message
transfer has happened within
the scope of the transaction.
Now we are going to commit the
transaction.

Transfer(handle=4, # The coordinator link

 delivery_tag="commit123",
 transfer_id=18,
 settled=False,

 state=TransferState(txn_id="txn1234"),
 fragments=[Fragment(
 format_code=4,
 first=True,
 last=True,
 payload_offset=0,

Specify the transaction

 payload=Discharge(fail=False))]) # Commit the transaction

Disposition(role=True,
 extents=[Extent(first=18,
 last=18,
 handle=5,
 settled=True,
 state=TransferState(
 outcome=Accepted(),
 txn_id="txn1234"))])

Our transaction commit has
been accepted.

Disposition(role=True,
 extents=[Extent(first=17,
 last=17,
 handle=12,
 settled=True,
 state=TransferState(
 outcome=Accepted(),
 txn_id=None))])

Our message was accepted. The
broker could not have
sent this settled outcome
until the transaction
succeeded.

txn_id is now null, since we
are not in the transaction.
#
The broker could also have
simply advanced the LWM.

Table 6: Transactional publish

3.2 Transactional accept
In this example, we demonstrate accepting a transfer within a transaction.

First we establish a link to
the transaction coordinator.

Attach(name="txn-link-1234",

 handle=4, # Our handle for the link.

 role=False,
 local=Linkage(
 source=None,

We are the sender.

 target=Coordinator(
 capabilities=["amqp:local-transactions"])),
 remote=None)

We are asking for a link to
the transaction coordinator,
and for it to support local
transactions.

Attach(name="txn-link-1234",
 handle=5,

The broker echoes the name,
and gives its handle.

 role=True, # Broker is the receiver.

 local=Linkage(
 source=None,
 target=Coordinator(
 capabilities=["amqp:local-transactions",
 "amqp:distributed-transactions",
 "amqp:promotable-transactions"])),

The broker says that it
does have a transactional
coordinator, and that it
supports these transactional
modes.

 remote=Linkage(
 source=None,
 target=Coordinator(
 capabilities=["amqp:local-transactions"])))

The broker echoes back our
statement of the linkage.

Now we have a link to the
transaction co-ordinator, with
handle 4 for send and handle 5
for receive.

Attach(name="my-link-1234",
 handle=11,
 role=True,
 transfer_unit=0,
 flow_state=FlowState(
 transfer_count=None,
 link_credit=10),
 local=Linkage(
 source=Source(
 address=”my_queue”,
 distribution-mode=”move”,
 outcomes=[“amqp:accepted:map”],
 default-outcome=Release()),
 target=Target()),
 remote=None)

Establish a link to consume
from “my_queue”.

Immediately issue credit,
so the broker can transfer
messages straight away.

Attach(name="my-link-1234",
 handle=17,
 role=False,
 local=Linkage(
 source=Source(
 address=”my_queue”,
 distribution_mode=”move”,
 outcomes=[“amqp:accepted:map”],
 default_outcome=Release()),
 target=Target(address="my_topic")),
 remote=Linkage(
 source=Source(
 address=”my_queue”,
 distribution_mode=”move”,
 outcomes=[“amqp:accepted:map”],
 default-outcome=Release()),
 target=Target()))

Transfer(handle=17, # Broker's handle for this link

 delivery_tag="my-link-1234-0",
 transfer_id=0,

Arbitrary;
serial number alias for above

 settled=False,
 state=None,

The broker cannot make any
assumption about the outcome
of the message, so it cannot
settle the transfer or
supply an outcome in the
state.

 fragments=[...]) # (the message, in sections)

At this point, we have a
message transferred to us.
Now we'll accept in, using a
transaction.

Transfer(handle=4, # Our handle to the coordinator

 delivery_tag="begin654", # This is arbitrary

 transfer_id=16, # This is a serial number alias

 settled=False,
 state=TransferState(outcome=Accepted()),

We expect confirmation
from the broker.

 fragments=[Fragment(
 format_code=4,
 first=True,
 last=True,
 payload_offset=0,

amqp-data
NB: in general, payloads are
encoded and sent as a binary

 payload=Declare(
 global_txn_id=None))])

Let the broker create a local
transaction ID

Disposition(role=True,
 extents=[Extent(
 first=16,
 last=16,

The broker is the receiver

Alias of transfer just made

 handle=5, # The broker's handle

 settled=True, # The transfer state is decided

 state=TransferState(
 outcome=Accepted(),
 txn_id="txn2345"))])

The declaration is
successful, and the created
transaction ID is “txn2345”

Disposition(role=True,
 extents=[Extent(first=0,
 last=0,
 handle=11,
 settled=False,
 state=TransferState(
 outcome=Accepted(),
 txn_id="txn2345"))])

We have to send an explicit
disposition, since we need to
supply the txn_id in the
state.

Transfer(handle=4, # Now commit the transaction.

 delivery_tag="commit654",
 transfer_id=18,
 settled=False,

 state=TransferState(txn_id="txn2345"),
 fragments=[Fragment(
 format_code=4,
 first=True,
 last=True,
 payload_offset=0,

 payload=Discharge(fail=False))])

Disposition(role=True,
 extents=[Extent(first=18,
 last=18,
 handle=5,
 settled=True,
 state=TransferState(
 outcome=Accepted()))])

Our transaction was committed.

Note the broker cannot send
both dispositions in one,
since they are referring to
transfers in different
directions.

Disposition(role=False,
 extents=[Extent(first=0,
 last=0,
 handle=17,
 settled=True,
 state=TransferState(
 outcome=Accepted()))])

The broker settles the state
of the transfer. It must wait
until after sending the
transaction settlement.

Table 7: Transactional accept

3.3 Transactional acquire
This example shows the transactional acquisition of a message. This is distinct from
transactional accept: acquiring a message means that it is unavailable for other
consumers, and committing does not confer an outcome; whereas committing a
transactional accept does indeed accept the transfer. Rolling back a transactional

acquisition means that the message is available again; whereas rolling back a
transactional accept means that the transfer simply goes back to its previous state, but
is still acquired.

First we establish a link to
the transaction coordinator.

Attach(name="txn-link-1234",

 handle=4, # Our handle for the link.

 role=False,
 local=Linkage(
 source=None,

We are the sender.

 target=Coordinator(
 capabilities=["amqp:local-transactions"])),
 remote=None)

We are asking for a link to
the transaction coordinator,
and for it to support local
transactions.

Attach(name="txn-link-1234",
 handle=5,

The broker echoes the name,
and gives its handle.

 role=True, # Broker is the receiver.

 local=Linkage(
 source=None,
 target=Coordinator(
 capabilities=["amqp:local-transactions",
 "amqp:distributed-transactions",
 "amqp:promotable-transactions"])),

The broker says that it
does have a transactional
coordinator, and that it
supports these transactional
modes.

 remote=Linkage(
 source=None,
 target=Coordinator(
 capabilities=["amqp:local-transactions"])))

The broker echoes back our
statement of the linkage.

Now we have a link to the
transaction co-ordinator, with
handle 4 for send and handle 5
for receive.

Attach(name="my-link-1234",
 handle=11,
 role=True,
 transfer_unit=0,
 flow_state=FlowState(
 transfer_count=None,
 link_credit=0),
 local=Linkage(
 source=Source(
 address=”my_queue”,
 distribution-mode=”move”,
 outcomes=[“amqp:accepted:map”],
 default-outcome=Release()),
 target=Target()),
 remote=None)

Establish a link to consume
from “my_queue”.

Don't issue credit, because we
will want to associate a
txn_id with the credit.

Attach(name="my-link-1234",
 handle=17,
 role=False,
 local=Linkage(
 source=Source(
 address=”my_queue”,
 distribution_mode=”move”,
 outcomes=[“amqp:accepted:map”],
 default_outcome=Release()),
 target=Target(address="my_topic")),
 remote=Linkage(
 source=Source(
 address=”my_queue”,
 distribution_mode=”move”,
 outcomes=[“amqp:accepted:map”],
 default-outcome=Release()),

 target=Target()))

Transfer(handle=4, # Our handle to the coordinator

 delivery_tag="begin765", # This is arbitrary

 transfer_id=32, # This is a serial number alias

 settled=False,
 state=TransferState(outcome=Accepted()),

We expect confirmation
from the broker.

 fragments=[Fragment(
 format_code=4,
 first=True,
 last=True,
 payload_offset=0,

amqp-data
NB: in general, payloads are
encoded and sent as a binary

 payload=Declare(
 global_txn_id=None))])

Let the broker create a local
transaction ID

Disposition(role=True,
 extents=[Extent(
 first=32,
 last=32,

The broker is the receiver

Alias of transfer just made

 handle=5, # The broker's handle

 settled=True, # The transfer state is decided

 state=TransferState(
 outcome=Accepted(),
 txn_id="txn5432"))])

The declaration is
successful, and the created
transaction ID is “txn4321”

Now we will
issue some credit associated
with the flow-state. The
broker is obliged to
transfer using the
transaction.
#
Because this is racy, in
general it is only useful
when synchronously getting
transfers.

Flow(handle=5,
 options={“txn-id”: “txn5432”},
 flow_state=FlowState(
 link_credit=1,
 drain=True))

We give the transaction ID
in options; now, all transfers
that are sent in response will
be associated with the
transaction.
By issuing drain=True, we
say “either send a transfer or
a flow frame”.

Transfer(handle=17, # Broker's handle for this link

 delivery_tag="my-link-1234-0",
 transfer_id=0,

Arbitrary;
serial number alias for above

 settled=False,
 state=TransferState(txn_id=”txn5432”),

The transfer is associated
with the transaction.

 fragments=[...]) # (the message, in sections)

At this point, we have a
message transferred to us in
the transaction.
Now we'll commit the
transaction.

Transfer(handle=4,

 delivery_tag="commit765",
 transfer_id=33,
 settled=False,

 state=TransferState(txn_id="txn5432"),
 fragments=[Fragment(

 format_code=4,
 first=True,
 last=True,
 payload_offset=0,

 payload=Discharge(fail=False))])

Disposition(role=True,
 extents=[Extent(first=33,
 last=33,
 handle=5,
 settled=True,
 state=TransferState(
 outcome=Accepted()))])

Transaction accepted. Now
we have acquired the message.

If we had rolled back, the
message would have been made
available again (possibly
resulting in it being sent
on our incoming link again,
should we supply more credit).

Table 8: Transactional acquisition

	1 Overview
	1.1 What is a broker?
	1.2 Relation to the other books

	2 Client to broker protocol
	2.1 Addresses
	2.2 Messages
	2.2.1 Message format
	2.2.2 Ordering
	2.2.3 Priority
	2.2.4 Message durability
	2.2.5 TTL

	2.3 Links
	2.3.1 Establishing and closing links
	2.3.2 Re-establishing links
	2.3.3 Link lifetime
	2.3.4 Errors
	2.3.5 Outcomes and settlement
	2.3.6 Delivery mode
	2.3.7 Transfer failures
	2.3.8 Publishing
	2.3.8.1 Delivery mode

	2.3.9 Flow control
	2.3.10 Filtering
	2.3.11 Subscribing and consuming
	2.3.11.1 Subscribers
	2.3.11.2 Delivery mode
	2.3.11.3 Consumers

	2.3.12 Browsing
	2.3.13 Dynamic sources and targets

	3 Broker transactions
	3.1 Transactional publish
	3.2 Transactional accept
	3.3 Transactional acquire

