37
38
39

Copyright Notice

© Copyright JPMorgan Chase Bank, Cisco Systems, Inc., Envoy Technologies Inc., iMatix Corporation, [ONA
Technologies, Red Hat, Inc., TWIST Process Innovations, and 29West Inc. 2006. All rights reserved.

License

JPMorgan Chase Bank, Cicso Systems, Inc., Envoy Technologies Inc., iMatix Corporation, IONA
Technologies, Red Hat, Inc., TWIST Process Innovations, and 29West Inc. (collectively, the "Authors") each
hereby grants to you a worldwide, perpetual, royalty-free, nontransferable, nonexclusive license to (i) copy,
display, and implement the Advanced Messaging Queue Protocol ("AMQP") Specification and (ii) the Licensed
Claims that are held by the Authors, all for the purpose of implementing the Advanced Messaging Queue
Protocol Specification. Your license and any rights under this Agreement will terminate immediately without
notice from any Author if you bring any claim, suit, demand, or action related to the Advanced Messaging
Queue Protocol Specification against any Author. Upon termination, you shall destroy all copies of the
Advanced Messaging Queue Protocol Specification in your possession or control.

As used hereunder, "Licensed Claims" means those claims of a patent or patent application, throughout the
world, excluding design patents and design registrations, owned or controlled, or that can be sublicensed
without fee and in compliance with the requirements of this Agreement, by an Author or its affiliates now or at
any future time and which would necessarily be infringed by implementation of the Advanced Messaging Queue
Protocol Specification. A claim is necessarily infringed hereunder only when it is not possible to avoid
infringing it because there is no plausible non-infringing alternative for implementing the required portions of
the Advanced Messaging Queue Protocol Specification. Notwithstanding the foregoing, Licensed Claims shall
not include any claims other than as set forth above even if contained in the same patent as Licensed Claims; or
that read solely on any implementations of any portion of the Advanced Messaging Queue Protocol
Specification that are not required by the Advanced Messaging Queue Protocol Specification, or that, if
licensed, would require a payment of royalties by the licensor to unaffiliated third parties. Moreover, Licensed
Claims shall not include (i) any enabling technologies that may be necessary to make or use any Licensed
Product but are not themselves expressly set forth in the Advanced Messaging Queue Protocol Specification
(e.g., semiconductor manufacturing technology, compiler technology, object oriented technology, networking
technology, operating system technology, and the like); or (ii) the implementation of other published standards
developed elsewhere and merely referred to in the body of the Advanced Messaging Queue Protocol
Specification, or (iii) any Licensed Product and any combinations thereof the purpose or function of which is
not required for compliance with the Advanced Messaging Queue Protocol Specification. For purposes of this
definition, the Advanced Messaging Queue Protocol Specification shall be deemed to include both architectural
and interconnection requirements essential for interoperability and may also include supporting source code
artifacts where such architectural, interconnection requirements and source code artifacts are expressly
identified as being required or documentation to achieve compliance with the Advanced Messaging Queue
Protocol Specification.

As used hereunder, "Licensed Products" means only those specific portions of products (hardware, software or
combinations thereof) that implement and are compliant with all relevant portions of the Advanced Messaging
Queue Protocol Specification.

N

© 00 N O O » W

11
12
13
14

15
16
17
18

19

20
21

22

Confidential

The following disclaimers, which you hereby also acknowledge as to any use you may make of the
Advanced Messaging Queue Protocol Specification:

THE ADVANCED MESSAGING QUEUE PROTOCOL SPECIFICATION IS PROVIDED "AS IS,"
AND THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE
CONTENTS OF THE ADVANCED MESSAGING QUEUE PROTOCOL SPECIFICATION ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF THE ADVANCED
MESSAGING QUEUE PROTOCOL SPECIFICATION WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE,
IMPLEMENTATION OR DISTRIBUTION OF THE ADVANCED MESSAGING QUEUE
PROTOCOL SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or
publicity pertaining to the Advanced Messaging Queue Protocol Specification or its contents without
specific, written prior permission. Title to copyright in the Advanced Messaging Queue Protocol
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Upon termination of your license or rights under this Agreement, you shall destroy all copies of the
Advanced Messaging Queue Protocol Specification in your possession or control.

Footer Page 2 of 40

10
11

12
13

14

Confidential

Status of this Document

This specification may change before final release and you are cautioned against relying on the content of

this specification. The authors are currently soliciting your contributions and suggestions. Licenses are
available for the purposes of feedback and (optionally) for implementation.

"JPMorgan", "JPMorgan Chase", "Chase", the JPMorgan Chase logo and the Octagon Symbol are
trademarks of JPMorgan Chase & Co.

IMATIX and the iMatix logo are trademarks of iMatix Corporation sprl.

IONA, IONA Technologies, and the IONA logos are trademarks of IONA Technologies PLC and/or its
subsidiaries.

LINUX is a trademark of Linus Torvalds. RED HAT and JBOSS are registered trademarks of Red Hat,
Inc. in the US and other countries.

Java, all Java-based trademarks and OpenOffice.org are trademarks of Sun Microsystems, Inc. in the
United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Footer Page 3 of 40

Confidential AMQ Protocol (major=10, minor=3)

1 AMQ Protocol (major=10, minor=3)

11 Class and Method Ids

These are the AMQP class and method ids. Note that these may change in new versions of AMQP and

implementers are strongly recommended to use the AMQP class specifications as a source for the class and

21

22
23
24
25
26
27
28
29
30
31
32

34

35
36
37
38
39
40
41

43

method ids rather than hard-coding these values.

These are the ID values for each class:

These

Connection
Channel =
Access = 3
Exchange =
Queue = 50
Basic = 60
File = 70
Stream = 8
Tx = 90
Dtx = 100
Tunnel = 1
Test = 120
Cluster =

= 10
20

0

40

0

10

61440

are the ID values for the Connection methods:

Connection.
Connection.
Connection.
Connection.

Connection
Connection

Connection.
Connection.
Connection.
Connection.
Connection.

Start = 10
Start-0Ok = 20
Secure = 30
Secure-0k = 40
.Tune = 50
.Tune-0k = 60
Open = 70
Open-0k = 80
Redirect = 90
Close = 100
Close-0k = 110

These are the ID values for the Channel methods:
Channel.Open = 10
Channel.Open-0k = 20
Channel.Flow = 30
Channel.Flow-0k = 40
Channel.Alert = 50
Channel.Close = 60
Channel.Close-0k = 70

These are the ID values for the Access methods:

Footer

N

o N O

11
12
13
14
15
16
17
18

20

21
22
23
24
25
26
27
28
29
30
31
32

34

35
36
37
38
39
40
41
42
43
44
45
46

48

Confidential

AMQ Protocol (major=10, minor=3)

These

These

These

These

These

Access.Request = 10
Access.Request-0k = 20

are the ID values for the Exchange methods:

Exchange.Declare = 10
Exchange.Declare-0k = 20
Exchange.Delete = 30
Exchange.Delete-0k = 40

are the ID values for the Queue methods:

Queue.Declare = 10
Queue.Declare-0k = 20
Queue.Bind = 30
Queue.Bind-0k = 40
Queue.Purge = 50
Queue.Purge-0k =
Queue.Delete = 70
Queue.Delete-0k = 80

60

are the ID values for the Basic methods:

Basic.Consume = 10
Basic.Consume-0k = 20
Basic.Cancel = 30

Basic.Cancel-0k = 40
Basic.Publish = 50
Basic.Return = 60
Basic.Deliver = 70

Basic.Get = 80
Basic.Get-0k = 90
Basic.Get-Empty = 100
Basic.Ack = 110
Basic.Reject = 120

are the ID values for the File methods:

File.Consume = 10
File.Consume-0k = 20
File.Cancel = 30
File.Cancel-0k = 40
File.Open = 50
File.Open-0k =
File.Stage = 70
File.Publish = 8
File.Return = 90
File.Deliver = 100
File.Ack = 110
File.Reject = 120

60

0

are the ID values for the Stream methods:

Footer

Page 5 of 40

NOoO O W=

10
11
12
13
14
15

17

18
19
20
21

23

24

26

27
28
29
30
31
32
33
34

36

37
38
39

41

42
43

44

Confidential AMQ Protocol (major=10, minor=3)
Stream.Consume = 10
Stream.Consume-0k = 20
Stream.Cancel = 30
Stream.Cancel-0k = 40
Stream.Publish = 50
Stream.Return = 60
Stream.Deliver = 70

These are the ID values for the Tx methods:
Tx.Select = 10
Tx.Select-0k = 20
Tx.Commit = 30
Tx.Commit-0k = 40
Tx.Rollback = 50
Tx.Rollback-0k = 60

These are the ID values for the Dtx methods:
Dtx.Select = 10
Dtx.Select-0k = 20
Dtx.Start = 30
Dtx.Start-0k = 40

These are the ID values for the Tunnel methods:
Tunnel.Request = 10

These are the ID values for the Test methods:
Test.Integer = 10
Test.Integer-0Ok = 20
Test.String = 30
Test.String-0k = 40
Test.Table = 50
Test.Table-0k = 60
Test.Content = 70
Test.Content-0k = 80

These are the ID values for the Cluster methods:
Cluster.Hello = 10
Cluster.Status = 20
Cluster.Bind = 30

111 Th nnection Cl

The connection class provides methods for a client to establish a network connection to a server, and for both

peers to operate the connection thereafter. The ID of the Connection Class is 10.

This is the formal grammar for the class:

Footer

Page 6 of 40

ONO O WN =

14

15

16

17

18
19

20
21

22

23

24
25
26
27

28
29

30

31

32

33
34

35

36

37

Confidential

AMQ Protocol (major=10, minor=3)

connection = open-connection *use-connection close-
connection

open-connection = C:protocol-header

S:START C:START-0K

*challenge

S:TUNE C:TUNE-OK

C:OPEN S:OPEN-OK | S:REDIRECT
challenge S:SECURE C:SECURE-0K

*channel
C:CLOSE S:CLOSE-0K
S:CLOSE C:CLOSE-OK

use-connection
close-connection

SN nonon

The server accepts the following methods:

*

*

*

Connection.Start-Ok (ID=20) - select security mechanism and locale : Sync response to Start , carries

content
Connection.Secure-Ok (ID=40) - security mechanism response : Sync response to Secure

Connection.Tune-Ok (ID=60) - negotiate connection tuning parameters : Sync response to Tune , carries

content
Connection.Open (ID=70) - open connection to virtual host : Sync request , carries content
Connection.Close (ID=100) - request a connection close : Sync request , carries content

Connection.Close-Ok (ID=110) - confirm a connection close : Sync response to Close

The client accepts the following methods:

Connection.Start (ID=10) - start connection negotiation : Sync request , carries content
Connection.Secure (ID=30) - security mechanism challenge : Sync request

Connection.Tune (ID=50) - propose connection tuning parameters : Sync request , carries content
Connection.Open-Ok (ID=80) - signal that the connection is ready : Sync response to Open

Connection.Redirect (ID=90) - asks the client to use a different server : Sync response to Open , carries

content
Connection.Close (ID=100) - request a connection close : Sync request , carries content

Connection.Close-Ok (ID=110) - confirm a connection close : Sync response to Close

1111 The Connection.Start Method

This method starts the connection negotiation process by telling the client the protocol version that the server

proposes, along with a list of security mechanisms which the client can use for authentication.

The Start method has the following specific fields:

This is the Start pseudo-structure:

Guidelines for implementers:

Footer

Page 7 of 40

10

11

12

13
14

15

16

17

18
19

20

21

22

23
24

25

26

Confidential AMQ Protocol (major=10, minor=3)

¢ If the client cannot handle the protocol version suggested by the server it MUST close the socket

connection.

¢ The server MUST provide a protocol version that is lower than or equal to that requested by the client in
the protocol header. If the server cannot support the specified protocol it MUST NOT send this method,

but MUST close the socket connection.

¢ All servers MUST support at least the en_US locale.

11.1.2 The Connection.Start-Ok Method

This method selects a SASL security mechanism. ASL uses SASL (RFC2222) to negotiate authentication

and encryption.
The Start-Ok method has the following specific fields:

This is the Start-Ok pseudo-structure:

111.3 The Connection.Secure Method

The SASL protocol works by exchanging challenges and responses until both peers have received sufficient

information to authenticate each other. This method challenges the client to provide more information.
The Secure method has the following specific fields:

This is the Secure pseudo-structure:

11.1.4 The Connection.Secure-Ok Method

This method attempts to authenticate, passing a block of SASL data for the security mechanism at the server

side.
The Secure-Ok method has the following specific fields:

This is the Secure-Ok pseudo-structure:

11.1.5 The Connection.Tune Method

This method proposes a set of connection configuration values to the client. The client can accept and/or
adjust these.

The Tune method has the following specific fields:

This is the Tune pseudo-structure:

Footer

Page 8 of 40

10

11

12

13
14
15

16

17
18

19
20

21

22

23

24

25

26

27

28

Confidential AMQ Protocol (major=10, minor=3)

11.1.6 The Connection.Tune-Ok Method

This method sends the client's connection tuning parameters to the server. Certain fields are negotiated,

others provide capability information.
The Tune-Ok method has the following specific fields:

This is the Tune-Ok pseudo-structure:

11.1.7 The Connection.Open Method

This method opens a connection to a virtual host, which is a collection of resources, and acts to separate

multiple application domains within a server.

The Open method has the following specific fields:
This is the Open pseudo-structure:

Guidelines for implementers:

o The client MUST open the context before doing any work on the connection.

o If the server supports multiple virtual hosts, it MUST enforce a full separation of exchanges, queues, and
all associated entities per virtual host. An application, connected to a specific virtual host, MUST NOT

be able to access resources of another virtual host.
¢ The server SHOULD verify that the client has permission to access the specified virtual host.

¢ The server MAY configure arbitrary limits per virtual host, such as the number of each type of entity

that may be used, per connection and/or in total.

¢ When the client uses the insist option, the server SHOULD accept the client connection unless it is

technically unable to do so.

1.1.1.8 The Connection.Open-Ok Method

This method signals to the client that the connection is ready for use.
The Open-Ok method has the following specific fields:

This is the Open-Ok pseudo-structure:

11.1.9 The Connection.Redirect Method

This method redirects the client to another server, based on the requested virtual host and/or capabilities.
The Redirect method has the following specific fields:

This is the Redirect pseudo-structure:

Footer

Page 9 of 40

10

11

12
13

14
15
16

17

18
19

20

21

22

23

24

25

26
27

28

Confidential AMQ Protocol (major=10, minor=3)

Guidelines for implementers:

¢ When getting the Connection.Redirect method, the client SHOULD reconnect to the host specified, and

if that host is not present, to any of the hosts specified in the known-hosts list.

11.1.10 The Connection.Close Method

This method indicates that the sender wants to close the connection. This may be due to internal conditions
(e.g. a forced shut-down) or due to an error handling a specific method, i.e. an exception. When a close is

due to an exception, the sender provides the class and method id of the method which caused the exception.
The Close method has the following specific fields:

This is the Close pseudo-structure:

Guidelines for implementers:

¢ After sending this method any received method except the Close-OK method MUST be discarded.

¢ The peer sending this method MAY use a counter or timeout to detect failure of the other peer to
respond correctly with the Close-OK method.

¢ When a server receives the Close method from a client it MUST delete all server-side resources
associated with the client's context. A client CANNOT reconnect to a context after sending or receiving

a Close method.

11.1.11 The Connection.Close-Ok Method

This method confirms a Connection.Close method and tells the recipient that it is safe to release resources

for the connection and close the socket.

The Close-Ok method has the following specific fields:
This is the Close-Ok pseudo-structure:

Guidelines for implementers:

& A peer that detects a socket closure without having received a Close-Ok handshake method SHOULD

log the error.

11.2 The Channel Class

The channel class provides methods for a client to establish a virtual connection - a channel - to a server and

for both peers to operate the virtual connection thereafter. The ID of the Channel Class is 20.

This is the formal grammar for the class:

Footer

Page 10 of 40

© 0o NO O~ WND =

11

12
13
14
15
16

17

18
19
20
21
22

23

24

25

26

27

28

29

30
31
32

33

34

Confidential AMQ Protocol (major=10, minor=3)

channel
open-channel
use-channel

open-channel *use-channel close-channel
C:0PEN S:0PEN-0K

C:FLOW S:FLOW-0K

S:FLOW C:FLOW-0K

S:ALERT

functional-class

C:CLOSE S:CLOSE-0K

S:CLOSE C:CLOSE-0K

close-channel

NSNS n

The server accepts the following methods:

¢ Channel.Open (ID=10) - open a channel for use : Sync request , carries content
¢ Channel.Flow (ID=30) - enable/disable flow from peer : Sync request

o Channel . Flow-Ok (ID=40) - confirm a flow method : Async

¢ Channel.Close (ID=60) - request a channel close : Sync request , carries content
¢ Channel.Close-Ok (ID=70) - confirm a channel close : Sync response to Close

The client accepts the following methods:

¢ Channel.Open-Ok (ID=20) - signal that the channel is ready : Sync response to Open
¢ Channel. Flow (ID=30) - enable/disable flow from peer : Sync request

¢ Channel.Flow-Ok (ID=40) - confirm a flow method : Async

¢ Channel.Alert (ID=50) - send a non-fatal warning message : Async , carries content
¢ Channel.Close (ID=60) - request a channel close : Sync request , carries content

¢ Channel.Close-Ok (ID=70) - confirm a channel close : Sync response to Close

11.21 The Channel.Open Method

This method opens a virtual connection (a channel).
The Open method has the following specific fields:
This is the Open pseudo-structure:

Guidelines for implementers:

¢ This method MUST NOT be called when the channel is already open.

¢ The server MUST NOT send a client more data in advance than this value allows. If sending specific
content in advance would exhaust the channel prefetch window, it MUST NOT send the content. Setting

this field to a very low non-zero value (such as 1) effectively disables all prefetching on the channel.

11.2.2 The Channel.Open-Ok Method

This method signals to the client that the channel is ready for use.

Footer

Page 11 of 40

o N o o >

10

11

12
13

14
15

16
17

18

19

20

21

22

23

24

25
26
27
28

29

Confidential

AMQ Protocol (major=10, minor=3)

The Open-Ok method has the following specific fields:

This is the Open-Ok pseudo-structure:

11.2.3 The Channel.Flow Method

This method asks the peer to pause or restart the flow of content data. This is a simple flow-control

mechanism that a peer can use to avoid oveflowing its queues or otherwise finding itself receiving more

messages than it can process. Note that this method is not intended for window control. The peer that

receives a request to stop sending content should finish sending the current content, if any, and then wait

until it receives a Flow restart method.

The Flow method has the following specific fields:

This is the Flow pseudo-structure:

Guidelines for implementers:

*

When a new channel is opened, it is active. Some applications assume that channels are inactive until

started. To emulate this behaviour a client MAY open the channel, then pause it.

When sending content data in multiple frames, a peer SHOULD monitor the channel for incoming

methods and respond to a Channel.Flow as rapidly as possible.

A peer MAY use the Channel.Flow method to throttle incoming content data for internal reasons, for

example, when exchangeing data over a slower connection.

The peer that requests a Channel.Flow method MAY disconnect and/or ban a peer that does not respect

the request.

1.1.2.4 The Channel.Flow-Ok Method

Confirms to the peer that a flow command was received and processed.

The Flow-Ok method has the following specific fields:

This is the Flow-Ok pseudo-structure:

11.2.5 The Channel.Alert Method

This method allows the server to send a non-fatal warning to the client. This is used for methods that are

normally asynchronous and thus do not have confirmations, and for which the server may detect errors that

need to be reported. Fatal errors are handled as channel or connection exceptions; non-fatal errors are sent

through this method.

The Alert method has the following specific fields:

Footer

Page 12 of 40

10
11

12

13
14

15

16

17

18

19

20

21
22
23

24

25
26

28

29

Confidential AMQ Protocol (major=10, minor=3)

This is the Alert pseudo-structure:

11.2.6 The Channel.Close Method

This method indicates that the sender wants to close the channel. This may be due to internal conditions (e.g.
a forced shut-down) or due to an error handling a specific method, i.e. an exception. When a close is due to

an exception, the sender provides the class and method id of the method which caused the exception.
The Close method has the following specific fields:

This is the Close pseudo-structure:

Guidelines for implementers:

¢ After sending this method any received method except Channel.Close-OK MUST be discarded.

¢ The peer sending this method MAY use a counter or timeout to detect failure of the other peer to

respond correctly with Channel.Close-OK..

11.2.7 The Channel.Close-Ok Method

This method confirms a Channel.Close method and tells the recipient that it is safe to release resources for

the channel and close the socket.
The Close-Ok method has the following specific fields:
This is the Close-Ok pseudo-structure:

Guidelines for implementers:

& A peer that detects a socket closure without having received a Channel.Close-Ok handshake method
SHOULD log the error.

11.3 The Access Class

The protocol control access to server resources using access tickets. A client must explicitly request access
tickets before doing work. An access ticket grants a client the right to use a specific set of resources - called a

"realm" - in specific ways. The ID of the Access Class is 30.

This is the formal grammar for the class:

access = C:REQUEST S:REQUEST-0K

The server accepts the following methods:

¢ Access.Request (ID=10) - request an access ticket : Sync request , carries content

Footer

Page 13 of 40

10
11
12

13
14

15
16

17

18
19

20

21

22

23

24
25

26

27
28

29

Confidential AMQ Protocol (major=10, minor=3)

The client accepts the following methods:

¢ Access.Request-Ok (ID=20) - grant access to server resources : Sync response to Request

11.3.1 The Access.Request Method

This method requests an access ticket for an access realm. The server responds by granting the access ticket.
If the client does not have access rights to the requested realm this causes a connection exception. Access

tickets are a per-channel resource.

The Request method has the following specific fields:
This is the Request pseudo-structure:

Guidelines for implementers:

¢ The realm name MUST start with either "/data" (for application resources) or "/admin" (for server
administration resources). If the realm starts with any other path, the server MUST raise a connection

exception with reply code 403 (access refused).

¢ The server MUST implement the /data realm and MAY implement the /admin realm. The mapping of

resources to realms is not defined in the protocol - this is a server-side configuration issue.

o If the specified realm is not known to the server, the server must raise a channel exception with reply
code 402 (invalid path).

1.1.3.2 The Access.Request-Ok Method

This method provides the client with an access ticket. The access ticket is valid within the current channel

and for the lifespan of the channel.

The Request-Ok method has the following specific fields:
This is the Request-Ok pseudo-structure:

Guidelines for implementers:

o The client MUST NOT use access tickets except within the same channel as originally granted.

¢ The server MUST isolate access tickets per channel and treat an attempt by a client to mix these as a

connection exception.

11.4 The Exchange Class

Exchanges match and distribute messages across queues. Exchanges can be configured in the server or

created at runtime. The ID of the Exchange Class is 40.

This is the formal grammar for the class:

Footer

Page 14 of 40

10

11

12
13

14

15

16

17

18

19
20

21
22
23

24
25

26
27

28
29

30
31

32
33

Confidential

AMQ Protocol (major=10, minor=3)

DECLARE S:DECLARE-O0K

exchange = C:
/ C:DELETE S:DELETE-0K

The server accepts the following methods:

L 4

*

Exchange.Declare (ID=10) - declare exchange, create if needed : Sync request , carries content

Exchange.Delete (ID=30) - delete an exchange : Sync request , carries content

The client accepts the following methods:

L 4

*

Exchange.Declare-Ok (ID=20) - confirms an exchange declaration : Sync response to Declare

Exchange.Delete-Ok (ID=40) - confirm deletion of an exchange : Sync response to Delete

11.41 The Exchange.Declare Method

This method creates an exchange if it does not already exist, and if the exchange exists, verifies that it is of

the correct and expected class.

The Declare method has the following specific fields:

This is the Declare pseudo-structure:

Guidelines for implementers:

*

amq_exchange_23 The server SHOULD support a minimum of 16 exchanges per virtual host and

ideally, impose no limit except as defined by available resources.

The client MUST provide a valid access ticket giving "active" access to the realm in which the exchange

exists or will be created, or "passive" access if the if-exists flag is set.

amq_exchange_15 Exchange names starting with "amq." are reserved for predeclared and standardised
exchanges. If the client attempts to create an exchange starting with "amq.", the server MUST raise a

channel exception with reply code 403 (access refused).

amq_exchange_16 If the exchange already exists with a different type, the server MUST raise a

connection exception with a reply code 507 (not allowed).

amq_exchange 18 If the server does not support the requested exchange type it MUST raise a

connection exception with a reply code 503 (command invalid).

amg_exchange_05 If set, and the exchange does not already exist, the server MUST raise a channel

exception with reply code 404 (not found).
amgq_exchange_24 The server MUST support both durable and transient exchanges.
The server MUST ignore the durable field if the exchange already exists.

amq_exchange_02 The server SHOULD allow for a reasonable delay between the point when it

determines that an exchange is not being used (or no longer used), and the point when it deletes the

Footer

Page 15 of 40

10
11

12

13

14

15

16

17

18

19
20
21

22

23
24
25
26
27

29

Confidential AMQ Protocol (major=10, minor=3)

exchange. At the least it must allow a client to create an exchange and then bind a queue to it, with a

small but non-zero delay between these two actions.

¢ amgq_exchange_25 The server MUST ignore the auto-delete field if the exchange already exists.

11.4.2 The Exchange.Declare-Ok Method

This method confirms a Declare method and confirms the name of the exchange, essential for automatically-

named exchanges.
The Declare-Ok method has the following specific fields:

This is the Declare-Ok pseudo-structure:

11.4.3 The Exchange.Delete Method

This method deletes an exchange. When an exchange is deleted all queue bindings on the exchange are

cancelled.
The Delete method has the following specific fields:

This is the Delete pseudo-structure:

11.4.4 The Exchange.Delete-Ok Method

This method confirms the deletion of an exchange.
The Delete-Ok method has the following specific fields:

This is the Delete-Ok pseudo-structure:

11.5 The Queue Class

Queues store and forward messages. Queues can be configured in the server or created at runtime. Queues
must be attached to at least one exchange in order to receive messages from publishers. The ID of the Queue
Class is 50.

This is the formal grammar for the class:

C:DECLARE S:DECLARE-OK
C:BIND S:BIND-OK
C:PURGE S:PURGE - 0K
C:DELETE S:DELETE-OK

queue

NN

The server accepts the following methods:

Footer

Page 16 of 40

10

11
12

13

14

15

16

17

18
19

20
21

22
23
24

25
26

27
28
29
30

31
32

Confidential AMQ Protocol (major=10, minor=3)
¢ Queue.Declare (ID=10) - declare queue, create if needed : Sync request , carries content
¢ Queue.Bind (ID=30) - bind queue to an exchange : Sync request , carries content
¢ Queue.Purge (ID=50) - purge a queue : Sync request , carries content
¢ Queue.Delete (ID=70) - delete a queue : Sync request , carries content

The client accepts the following methods:

Queue.Declare-Ok (ID=20) - confirms a queue definition : Sync response to Declare , carries content
Queue.Bind-Ok (ID=40) - confirm bind successful : Sync response to Bind
Queue.Purge-Ok (ID=60) - confirms a queue purge : Sync response to Purge

Queue.Delete-Ok (ID=80) - confirm deletion of a queue : Sync response to Delete

11.51 The Queue.Declare Method

This method creates or checks a queue. When creating a new queue the client can specify various properties

that control the durability of the queue and its contents, and the level of sharing for the queue.

The Declare method has the following specific fields:

This is the Declare pseudo-structure:

Guidelines for implementers:

*

amq_queue_34 The server MUST create a default binding for a newly-created queue to the default

exchange, which is an exchange of type 'direct'.

amq_queue_35 The server SHOULD support a minimum of 256 queues per virtual host and ideally,

impose no limit except as defined by available resources.

amq_queue_10 The queue name MAY be empty, in which case the server MUST create a new queue

with a unique generated name and return this to the client in the Declare-Ok method.

amg_queue_32 Queue names starting with "amq." are reserved for predeclared and standardised server
queues. If the queue name starts with "amq." and the passive option is zero, the server MUST raise a

connection exception with reply code 403 (access refused).

amq_queue_05 If set, and the queue does not already exist, the server MUST respond with a reply code

404 (not found) and raise a channel exception.

amq_queue_03 The server MUST recreate the durable queue after a restart.

amq_queue_36 The server MUST support both durable and transient queues.

amq_queue_37 The server MUST ignore the durable field if the queue already exists.

amq_queue_38 The server MUST support both exclusive (private) and non-exclusive (shared) queues.

amqg_queue_04 The server MUST raise a channel exception if 'exclusive' is specified and the queue

already exists and is owned by a different connection.

Footer

Page 17 of 40

o o~ WD

11

12

13

14
15
16

17

18

19

20

21

22

23
24
25
26
27
28
29
30

31
32

Confidential

AMQ Protocol (major=10, minor=3)

amq_queue_02 The server SHOULD allow for a reasonable delay between the point when it determines
that a queue is not being used (or no longer used), and the point when it deletes the queue. At the least it
must allow a client to create a queue and then create a consumer to read from it, with a small but non-
zero delay between these two actions. The server should equally allow for clients that may be
disconnected prematurely, and wish to re-consume from the same queue without losing messages. We

would recommend a configurable timeout, with a suitable default value being one minute.

amq_queue_31 The server MUST ignore the auto-delete field if the queue already exists.

11.5.2 The Queue.Declare-Ok Method

This method confirms a Declare method and confirms the name of the queue, essential for automatically-

named queues.

The Declare-Ok method has the following specific fields:

This is the Declare-Ok pseudo-structure:

1.1.5.3 The Queue.Bind Method

This method binds a queue to an exchange. Until a queue is bound it will not receive any messages. In a

classic messaging model, store-and-forward queues are bound to a dest exchange and subscription queues

are bound to a dest_wild exchange.

The Bind method has the following specific fields:

This is the Bind pseudo-structure:

Guidelines for implementers:

*

amq_queue_25 A server MUST allow ignore duplicate bindings - that is, two or more bind methods for a

specific queue, with identical arguments - without treating these as an error.
amq_queue_39 If a bind fails, the server MUST raise a connection exception.

amq_queue_12 The server MUST NOT allow a durable queue to bind to a transient exchange. If the
client attempts this the server MUST raise a channel exception.

amq_queue_13 Bindings for durable queues are automatically durable and the server SHOULD restore
such bindings after a server restart.

amq_queue_17 If the client attempts to an exchange that was declared as internal, the server MUST raise
a connection exception with reply code 530 (not allowed).

amq_queue_40 The server SHOULD support at least 4 bindings per queue, and ideally, impose no limit

except as defined by available resources.

amq_queue_26 If the queue does not exist the server MUST raise a channel exception with reply code
404 (not found).

Footer

Page 18 of 40

10

11

12

13

14
15

16
17
18

19
20

21
22

23

24

25

26

Confidential AMQ Protocol (major=10, minor=3)

¢ amq_queue_l14 If the exchange does not exist the server MUST raise a channel exception with reply
code 404 (not found).

1.1.5.4 The Queue.Bind-Ok Method

This method confirms that the bind was successful.
The Bind-Ok method has the following specific fields:

This is the Bind-Ok pseudo-structure:

11.5.5 The Queue.Purge Method

This method removes all messages from a queue. It does not cancel consumers. Purged messages are deleted

without any formal "undo" mechanism.

The Purge method has the following specific fields:
This is the Purge pseudo-structure:

Guidelines for implementers:

¢ amgq_queue_15 A call to purge MUST result in an empty queue.

¢ amq_queue_41 On transacted channels the server MUST not purge messages that have already been sent

to a client but not yet acknowledged.

¢ amgq_queue_42 The server MAY implement a purge queue or log that allows system administrators to
recover accidentally-purged messages. The server SHOULD NOT keep purged messages in the same
storage spaces as the live messages since the volumes of purged messages may get very large.

¢ The client MUST provide a valid access ticket giving "read" access rights to the queue's access realm.
Note that purging a queue is equivalent to reading all messages and discarding them.

¢ amgqg_queue_16 The queue must exist. Attempting to purge a non-existing queue causes a channel

exception.

11.5.6 The Queue.Purge-Ok Method

This method confirms the purge of a queue.
The Purge-Ok method has the following specific fields:

This is the Purge-Ok pseudo-structure:

Footer

Page 19 of 40

10
11

12

13

14

15

16

17

18
19

20

21
22
23
24
25
26
27
28
29

31

Confidential AMQ Protocol (major=10, minor=3)

11.5.7 The Queue.Delete Method

This method deletes a queue. When a queue is deleted any pending messages are sent to a dead-letter queue

if this is defined in the server configuration, and all consumers on the queue are cancelled.
The Delete method has the following specific fields:
This is the Delete pseudo-structure:

Guidelines for implementers:

¢ amq_queue_43 The server SHOULD use a dead-letter queue to hold messages that were pending on a
deleted queue, and MAY provide facilities for a system administrator to move these messages back to an

active queue.

¢ amgqg_queue_21 The queue must exist. Attempting to delete a non-existing queue causes a channel

exception.

¢ amq_queue_29 amq_queue_30 The server MUST respect the if-unused flag when deleting a queue.

1.1.5.8 The Queue.Delete-Ok Method

This method confirms the deletion of a queue.
The Delete-Ok method has the following specific fields:

This is the Delete-Ok pseudo-structure:

11.6 The Basic Class

The Basic class provides methods that support an industry-standard messaging model. The ID of the Basic
Class is 60.

This is the formal grammar for the class:

:CONSUME S:CONSUME-0K

:CANCEL S:CANCEL-0K

:PUBLISH content

:RETURN content

:DELIVER content

:GET (S:GET-0OK content / S:GET-EMPTY)
:ACK

:REJECT

basic

NN
OoOoOOununo 0o

>These are the properties defined for $(class.name) content:

Footer

Page 20 of 40

ONO O WN =

31
32
33
34
35
36

37

38
39
40
41
42

43

Confidential

AMQ Protocol (major=10, minor=3)

- content type (shortstr) -
MIME content type
- content encoding (shortstr) -
MIME content encoding
- headers (table) -
Message header field table
- delivery mode (octet) -
Non-persistent (1) or persistent (2)
- priority (octet) -
The message priority, 0 to 9
- correlation id (shortstr) -
The application correlation identifier
- reply to (shortstr) -
The destination to reply to
- expiration (shortstr) -
Message expiration specification
- message id (shortstr) -
The application message identifier
- timestamp (timestamp) -
The message timestamp
- type (shortstr) -
The message type name
- user id (shortstr) -
The creating user id
- app id (shortstr) -
The creating application id
- cluster id (shortstr) -
Intra-cluster routing identifier

The server accepts the following methods:

*

*

Basic.Consume (ID=10) - start a queue consumer : Sync request , carries content
Basic.Cancel (ID=30) - end a queue consumer : Sync request

Basic.Publish (ID=50) - publish a message : Async , carries content

Basic.Get (ID=80) - direct access to a queue : Sync request , carries content
Basic.Ack (ID=110) - acknowledge one or more messages : Async , carries content

Basic.Reject (ID=120) - reject an incoming message : Async , carries content

The client accepts the following methods:

Basic.Consume-Ok (ID=20) - confirm a new consumer : Sync response to Consume
Basic.Cancel-Ok (ID=40) - confirm a cancelled consumer : Sync response to Cancel
Basic.Return (ID=60) - return a failed message : Async , carries content

Basic.Deliver (ID=70) - notify the client of a consumer message : Async , carries content
Basic.Get-Ok (ID=90) - provide client with a message : Sync response to Get , carries content

Basic.Get-Empty (ID=100) - indicate no messages available : Sync response to Get

Footer

Page 21 of 40

10
11
12

13
14
15

16
17

18

19

20

21
22

23

24

25

26
27
28

29

30

Confidential AMQ Protocol (major=10, minor=3)

11.6.1 The Basic.Consume Method

This method asks the server to start a "consumer”, which is a transient request for messages from a specific

queue. Consumers last as long as the channel they were created on, or until the client cancels them.
The Consume method has the following specific fields:
This is the Consume pseudo-structure:

Guidelines for implementers:

¢ amgq_basic_01 The server SHOULD support at least 16 consumers per queue, unless the queue was
declared as private, and ideally, impose no limit except as defined by available resources.

¢ The client MUST provide a valid access ticket giving "read" access rights to the realm for the queue.

¢ todo The tag MUST NOT refer to an existing consumer. If the client attempts to create two consumers
with the same non-empty tag the server MUST raise a connection exception with reply code 530 (not

allowed).

¢ amgq_basic_17 The server MUST ignore this setting when the client is not processing any messages - i.e.
the prefetch size does not limit the transfer of single messages to a client, only the sending in advance of

more messages while the client still has one or more unacknowledged messages.

¢ amgq_basic_18 The server MAY send less data in advance than allowed by the client's specified prefetch
windows but it MUST NOT send more.

¢ amgq_basic_02 If the server cannot grant exclusive access to the queue when asked, - because there are

other consumers active - it MUST raise a channel exception with return code 403 (access refused).

11.6.2 The Basic.Consume-Ok Method

The server provides the client with a consumer tag, which is used by the client for methods called on the

consumer at a later stage.
The Consume-Ok method has the following specific fields:

This is the Consume-Ok pseudo-structure:

11.6.3 The Basic.Cancel Method

This method cancels a consumer. This does not affect already delivered messages, but it does mean the
server will not send any more messages for that consumer. The client may receive an abitrary number of

messages in between sending the cancel method and receiving the cancel-ok reply.
The Cancel method has the following specific fields:

This is the Cancel pseudo-structure:

Footer

Page 22 of 40

10
11
12

13

14

15

16
17
18

19

20

21

22
23
24

25

26

27

Confidential AMQ Protocol (major=10, minor=3)

Guidelines for implementers:

¢ amgq_basic_04

+ todo If the queue no longer exists when the client sends a cancel command, or the consumer has been

cancelled for other reasons, this command has no effect.

1.1.6.4 The Basic.Cancel-Ok Method

This method confirms that the cancellation was completed.
The Cancel-Ok method has the following specific fields:

This is the Cancel-Ok pseudo-structure:

11.6.5 The Basic.Publish Method

This method publishes a message to a specific exchange. The message will be routed to queues as defined by
the exchange configuration and distributed to any active consumers when the transaction, if any, is

committed.
The Publish method has the following specific fields:

This is the Publish pseudo-structure:

11.6.6 The Basic.Return Method

This method returns an undeliverable message that was published with the "immediate" flag set, or an
unroutable message published with the "mandatory” flag set. The reply code and text provide information

about the reason that the message was undeliverable.
The Return method has the following specific fields:

This is the Return pseudo-structure:

1.1.6.7 The Basic.Deliver Method

This method delivers a message to the client, via a consumer. In the asynchronous message delivery model,
the client starts a consumer using the Consume method, then the server responds with Deliver methods as

and when messages arrive for that consumer.
The Deliver method has the following specific fields:
This is the Deliver pseudo-structure:

Guidelines for implementers:

Footer

Page 23 of 40

E ¢ I \V)

10

11

12
13

14

15

16

17

18

19

20

21
22

23

24

Confidential AMQ Protocol (major=10, minor=3)

¢ amgq_basic_19 The server SHOULD track the number of times a message has been delivered to clients
and when a message is redelivered a certain number of times - e.g. 5 times - without being
acknowledged, the server SHOULD consider the message to be unprocessable (possibly causing client

applications to abort), and move the message to a dead letter queue.

11.6.8 The Basic.Get Method

This method provides a direct access to the messages in a queue using a synchronous dialogue that is
designed for specific types of application where synchronous functionality is more important than

performance.
The Get method has the following specific fields:

This is the Get pseudo-structure:

11.6.9 The Basic.Get-Ok Method

This method delivers a message to the client following a get method. A message delivered by 'get-ok' must

be acknowledged unless the no-ack option was set in the get method.
The Get-Ok method has the following specific fields:

This is the Get-Ok pseudo-structure:

1.1.6.10 The Basic.Get-Empty Method

This method tells the client that the queue has no messages available for the client.
The Get-Empty method has the following specific fields:

This is the Get-Empty pseudo-structure:

1.1.6.11 The Basic.Ack Method

This method acknowledges one or more messages delivered via the Deliver or Get-Ok methods. The client

can ask to confirm a single message or a set of messages up to and including a specific message.
The Ack method has the following specific fields:

This is the Ack pseudo-structure:

Footer

Page 24 of 40

11
12

13
14

15
16
17
18
19

20

21
22
23
24
25

26

Confidential

AMQ Protocol (major=10, minor=3)

1.1.6.12 The Basic.Reject Method

This method allows a client to reject a message. It can be used to interrupt and cancel large incoming

messages, or return untreatable messages to their original queue.

The Reject method has the following specific fields:

This is the Reject pseudo-structure:

Guidelines for implementers:

*

amq_basic_21 The server SHOULD be capable of accepting and process the Reject method while
sending message content with a Deliver or Get-Ok method. I.e. the server should read and process
incoming methods while sending output frames. To cancel a partially-send content, the server sends a

content body frame of size 1 (i.e. with no data except the frame-end octet).

amgq_basic_22 The server SHOULD interpret this method as meaning that the client is unable to process

the message at this time.

A client MUST NOT use this method as a means of selecting messages to process. A rejected message

MAY be discarded or dead-lettered, not necessarily passed to another client.

amgq_basic_23 The server MUST NOT deliver the message to the same client within the context of the
current channel. The recommended strategy is to attempt to deliver the message to an alternative
consumer, and if that is not possible, to move the message to a dead-letter queue. The server MAY use
more sophisticated tracking to hold the message on the queue and redeliver it to the same client at a later

stage.

11.7 The File Class

The file class provides methods that support reliable file transfer. File messages have a specific set of

properties that are required for interoperability with file transfer applications. File messages and

acknowledgements are subject to channel transactions. Note that the file class does not provide message

browsing methods; these are not compatible with the staging model. Applications that need browsable file
transfer should use JMS content and the JMS class. The ID of the File Class is 70.

This is the formal grammar for the class:

Footer

Page 25 of 40

O ©WoONOOOH»WN =

—_

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32

33
34
35
36
37
38
39
40

41

42
43
44

45

Confidential

AMQ Protocol (major=10, minor=3)

file :CONSUME S:CONSUME-0K

:CANCEL S:CANCEL-0K

:OPEN S:0PEN-OK C:STAGE content
:OPEN C:0PEN-OK S:STAGE content
:PUBLISH

:DELIVER

:RETURN

:ACK

:REJECT

NN
OOOununounnooon

>These are the properties defined for $(class.name) content:

- content type (shortstr) -
MIME content type
- content encoding (shortstr) -
MIME content encoding
- headers (table) -
Message header field table
- priority (octet) -
The message priority, 0 to 9
- reply to (shortstr) -
The destination to reply to
- message id (shortstr) -
The application message identifier
- filename (shortstr) -
The message filename
- timestamp (timestamp) -
The message timestamp
- cluster id (shortstr) -
Intra-cluster routing identifier

The server accepts the following methods:

¢ File.Consume (ID=10) - start a queue consumer : Sync request , carries content

+ File.Cancel (ID=30) - end a queue consumer : Sync request

+ File.Open (ID=50) - request to start staging : Sync request , carries content

¢ File.Open-Ok (ID=60) - confirm staging ready : Sync request

« File.Stage (ID=70) - stage message content : Async

¢ File.Publish (ID=80) - publish a message : Async , carries content

¢ File. Ack (ID=110) - acknowledge one or more messages : Async , carries content
+ File.Reject (ID=120) - reject an incoming message : Async , carries content

The client accepts the following methods:

¢ File.Consume-Ok (ID=20) - confirm a new consumer : Sync response to Consume
¢ File.Cancel-Ok (ID=40) - confirm a cancelled consumer : Sync response to Cancel
+ File.Open (ID=50) - request to start staging : Sync request , carries content

¢ File.Open-Ok (ID=60) - confirm staging ready : Sync request

Footer

Page 26 of 40

10
11

12

13
14
15

16
17

18

19

20

21
22

23

24

25

26
27

28

29

Confidential AMQ Protocol (major=10, minor=3)

¢ File.Stage (ID=70) - stage message content : Async
¢ File.Return (ID=90) - return a failed message : Async , carries content

« File.Deliver (ID=100) - notify the client of a consumer message : Async , carries content

11.71 The File.Consume Method

This method asks the server to start a "consumer", which is a transient request for messages from a specific

queue. Consumers last as long as the channel they were created on, or until the client cancels them.

The Consume method has the following specific fields:

This is the Consume pseudo-structure:

Guidelines for implementers:

¢ The server SHOULD support at least 16 consumers per queue, unless the queue was declared as private,
and ideally, impose no limit except as defined by available resources.

¢ The client MUST provide a valid access ticket giving "read" access rights to the realm for the queue.

¢ todo The tag MUST NOT refer to an existing consumer. If the client attempts to create two consumers
with the same non-empty tag the server MUST raise a connection exception with reply code 530 (not
allowed).

¢ The server MAY send less data in advance than allowed by the client's specified prefetch windows but it
MUST NOT send more.

¢ amgq_file_00 If the server cannot grant exclusive access to the queue when asked, - because there are

other consumers active - it MUST raise a channel exception with return code 405 (resource locked).

11.7.2 The File.Consume-Ok Method

This method provides the client with a consumer tag which it MUST use in methods that work with the

consumer.
The Consume-Ok method has the following specific fields:

This is the Consume-Ok pseudo-structure:

11.7.3 The File.Cancel Method

This method cancels a consumer. This does not affect already delivered messages, but it does mean the

server will not send any more messages for that consumer.
The Cancel method has the following specific fields:

This is the Cancel pseudo-structure:

Footer

Page 27 of 40

© 0o N o

10

11

12

13
14

15

16

17

18
19

20

21

22

23
24
25

26

Confidential AMQ Protocol (major=10, minor=3)

11.7.4 The File.Cancel-Ok Method

This method confirms that the cancellation was completed.
The Cancel-Ok method has the following specific fields:

This is the Cancel-Ok pseudo-structure:

11.75 The File.Open Method

This method requests permission to start staging a message. Staging means sending the message into a
temporary area at the recipient end and then delivering the message by referring to this temporary area.
Staging is how the protocol handles partial file transfers - if a message is partially staged and the connection

breaks, the next time the sender starts to stage it, it can restart from where it left off.
The Open method has the following specific fields:

This is the Open pseudo-structure:

11.7.6 The File.Open-Ok Method

This method confirms that the recipient is ready to accept staged data. If the message was already partially-

staged at a previous time the recipient will report the number of octets already staged.
The Open-Ok method has the following specific fields:

This is the Open-Ok pseudo-structure:

11.7.7 The File.Stage Method

This method stages the message, sending the message content to the recipient from the octet offset specified
in the Open-Ok method.

The Stage method has the following specific fields:

This is the Stage pseudo-structure:

1.1.7.8 The File.Publish Method

This method publishes a staged file message to a specific exchange. The file message will be routed to
queues as defined by the exchange configuration and distributed to any active consumers when the

transaction, if any, is committed.

The Publish method has the following specific fields:

Footer

Page 28 of 40

10
11

12

13

14

15

16

17

18

19

20
21

22

23

24

25
26
27

28

Confidential AMQ Protocol (major=10, minor=3)

This is the Publish pseudo-structure:

11.79 The File.Return Method

This method returns an undeliverable message that was published with the "immediate" flag set, or an
unroutable message published with the "mandatory” flag set. The reply code and text provide information

about the reason that the message was undeliverable.
The Return method has the following specific fields:

This is the Return pseudo-structure:

11.710 The File.Deliver Method

This method delivers a staged file message to the client, via a consumer. In the asynchronous message
delivery model, the client starts a consumer using the Consume method, then the server responds with

Deliver methods as and when messages arrive for that consumer.
The Deliver method has the following specific fields:
This is the Deliver pseudo-structure:

Guidelines for implementers:

¢ The server SHOULD track the number of times a message has been delivered to clients and when a
message is redelivered a certain number of times - e.g. 5 times - without being acknowledged, the server
SHOULD consider the message to be unprocessable (possibly causing client applications to abort), and

move the message to a dead letter queue.

1.1.7.11 The File.Ack Method

This method acknowledges one or more messages delivered via the Deliver method. The client can ask to

confirm a single message or a set of messages up to and including a specific message.
The Ack method has the following specific fields:

This is the Ack pseudo-structure:

11.712 The File.Reject Method

This method allows a client to reject a message. It can be used to return untreatable messages to their original
queue. Note that file content is staged before delivery, so the client will not use this method to interrupt

delivery of a large message.

The Reject method has the following specific fields:

Footer

Page 29 of 40

o O B

N

11

12
13
14
15

16

17
18
19
20
21
22

24

25
26
27
28
29
30
31
32
33
34
35

36

37
38
39

Confidential

AMQ Protocol (major=10, minor=3)

This is the Reject pseudo-structure:

Guidelines for implementers:

¢ The server SHOULD interpret this method as meaning that the client is unable to process the message at

this time.

¢ A client MUST NOT use this method as a means of selecting messages to process. A rejected message

MAY be discarded or dead-lettered, not necessarily passed to another client.

¢ The server MUST NOT deliver the message to the same client within the ¢

ontext of the current channel.

The recommended strategy is to attempt to deliver the message to an alternative consumer, and if that is

not possible, to move the message to a dead-letter queue. The server MAY use more sophisticated

tracking to hold the message on the queue and redeliver it to the same client at a later stage.

11.8 The Stream Class

The stream class provides methods that support multimedia streaming. The stream class uses the following

semantics: one message is one packet of data; delivery is unacknowleged and

unreliable; the consumer can

specify quality of service parameters that the server can try to adhere to; lower-priority messages may be

discarded in favour of high priority messages. The ID of the Stream Class is 80.

This is the formal grammar for the class:

C:CONSUME S:CONSUME-0K
C:CANCEL S:CANCEL-0K
C:PUBLISH content
S:RETURN

S:DELIVER content

stream

NN

>These are the properties defined for $(class.name) content:

- content type (shortstr) -
MIME content type
- content encoding (shortstr) -
MIME content encoding
- headers (table) -
Message header field table
- priority (octet) -
The message priority, 0 to 9
- timestamp (timestamp) -
The message timestamp

The server accepts the following methods:

¢ Stream.Consume (ID=10) - start a queue consumer : Sync request , carries content

¢ Stream.Cancel (ID=30) - end a queue consumer : Sync request

o Stream.Publish (ID=50) - publish a message : Async , carries content

Footer

Page 30 of 40

10

11

12

13

14
15
16

17

18
19
20

21
22
23

24

25

26

27
28

29

30

Confidential

AMQ Protocol (major=10, minor=3)

The client accepts the following methods:

*

Stream.Consume-Ok (ID=20) - confirm a new consumer : Sync response to Consume
Stream.Cancel-Ok (ID=40) - confirm a cancelled consumer : Sync response to Cancel
Stream.Return (ID=60) - return a failed message : Async , carries content

Stream.Deliver (ID=70) - notify the client of a consumer message : Async , carries content

11.81 The Stream.Consume Method

This method asks the server to start a "consumer", which is a transient request for messages from a specific

queue. Consumers last as long as the channel they were created on, or until the client cancels them.

The Consume method has the following specific fields:

This is the Consume pseudo-structure:

Guidelines for implementers:

L 4

The server SHOULD support at least 16 consumers per queue, unless the queue was declared as private,

and ideally, impose no limit except as defined by available resources.

Streaming applications SHOULD use different channels to select different streaming resolutions. AMQP
makes no provision for filtering and/or transforming streams except on the basis of priority-based

selective delivery of individual messages.

The client MUST provide a valid access ticket giving "read" access rights to the realm for the queue.
"todo" The tag MUST NOT refer to an existing consumer. If the client attempts to create two consumers
with the same non-empty tag the server MUST raise a connection exception with reply code 530 (not
allowed).

The server MAY ignore the prefetch values and consume rates, depending on the type of stream and the
ability of the server to queue and/or reply it. The server MAY drop low-priority messages in favour of
high-priority messages.

amg_file_00 If the server cannot grant exclusive access to the queue when asked, - because there are

other consumers active - it MUST raise a channel exception with return code 405 (resource locked).

1.1.8.2 The Stream.Consume-Ok Method

This method provides the client with a consumer tag which it may use in methods that work with the

consumer.

The Consume-Ok method has the following specific fields:

This is the Consume-Ok pseudo-structure:

Footer

Page 31 of 40

10

11
12

13

14

15

16
17
18

19

20

21

22
23
24

25

26

Confidential AMQ Protocol (major=10, minor=3)

1.1.8.3 The Stream.Cancel Method

This method cancels a consumer. Since message delivery is asynchronous the client may continue to receive

messages for a short while after canceling a consumer. It may process or discard these as appropriate.
The Cancel method has the following specific fields:

This is the Cancel pseudo-structure:

11.8.4 The Stream.Cancel-Ok Method

This method confirms that the cancellation was completed.
The Cancel-Ok method has the following specific fields:

This is the Cancel-Ok pseudo-structure:

1.1.8.5 The Stream.Publish Method

This method publishes a message to a specific exchange. The message will be routed to queues as defined by

the exchange configuration and distributed to any active consumers as appropriate.
The Publish method has the following specific fields:

This is the Publish pseudo-structure:

1.1.8.6 The Stream.Return Method

This method returns an undeliverable message that was published with the "immediate" flag set, or an
unroutable message published with the "mandatory” flag set. The reply code and text provide information

about the reason that the message was undeliverable.
The Return method has the following specific fields:

This is the Return pseudo-structure:

1.1.8.7 The Stream.Deliver Method

This method delivers a message to the client, via a consumer. In the asynchronous message delivery model,
the client starts a consumer using the Consume method, then the server responds with Deliver methods as

and when messages arrive for that consumer.
The Deliver method has the following specific fields:

This is the Deliver pseudo-structure:

Footer

Page 32 of 40

[6)]

© 00 N O®

11

12
13
14

15

16
17

18

19

20
21

22

23

24

25

26

27

28

29
30

Confidential AMQ Protocol (major=10, minor=3)

11.9 The Tx Class

Standard transactions provide so-called "1.5 phase commit". We can ensure that work is never lost, but there
is a chance of confirmations being lost, so that messages may be resent. Applications that use standard

transactions must be able to detect and ignore duplicate messages. The ID of the Tx Class is 90.

This is the formal grammar for the class:

= C:SELECT S:SELECT-OK
/ C:COMMIT S:COMMIT-OK
/ C:ROLLBACK S:ROLLBACK-0K

tx

The server accepts the following methods:

¢ Tx.Select (ID=10) - select standard transaction mode : Sync request
¢ Tx.Commit (ID=30) - commit the current transaction : Sync request
¢ TxRollback (ID=50) - abandon the current transaction : Sync request

The client accepts the following methods:

¢ Tx.Select-Ok (ID=20) - confirm transaction mode : Sync response to Select
¢ Tx.Commit-Ok (ID=40) - confirm a successful commit : Sync response to Commit

¢ Tx.Rollback-Ok (ID=60) - confirm a successful rollback : Sync response to Rollback

11.91 The Tx.Select Method

This method sets the channel to use standard transactions. The client must use this method at least once on a

channel before using the Commit or Rollback methods.
The Select method has the following specific fields:

This is the Select pseudo-structure:

11.9.2 The Tx.Select-Ok Method

This method confirms to the client that the channel was successfully set to use standard transactions.
The Select-Ok method has the following specific fields:

This is the Select-Ok pseudo-structure:

11.9.3 The Tx.Commit Method

This method commits all messages published and acknowledged in the current transaction. A new

transaction starts immediately after a commit.

Footer

Page 33 of 40

11

12

13

14
15

16

17

18

19
20
21
22
23

24

25
26
27

29

Confidential AMQ Protocol (major=10, minor=3)

The Commit method has the following specific fields:

This is the Commit pseudo-structure:

11.9.4 The Tx.Commit-Ok Method

This method confirms to the client that the commit succeeded. Note that if a commit fails, the server raises a

channel exception.
The Commit-Ok method has the following specific fields:

This is the Commit-Ok pseudo-structure:

1.1.9.5 The Tx.Rollback Method

This method abandons all messages published and acknowledged in the current transaction. A new

transaction starts immediately after a rollback.
The Rollback method has the following specific fields:

This is the Rollback pseudo-structure:

11.9.6 The Tx.Rollback-Ok Method

This method confirms to the client that the rollback succeeded. Note that if an rollback fails, the server raises

a channel exception.
The Rollback-Ok method has the following specific fields:

This is the Rollback-Ok pseudo-structure:

1110 The Dix Class

Distributed transactions provide so-called "2-phase commit". This is slower and more complex than standard
transactions but provides more assurance that messages will be delivered exactly once. The AMQP
distributed transaction model supports the X-Open XA architecture and other distributed transaction
implementations. The Dtx class assumes that the server has a private communications channel (not AMQP)
to a distributed transaction coordinator. The ID of the Dtx Class is 100.

This is the formal grammar for the class:

dtx = C:SELECT S:SELECT-O0K
C:START S:START-0K

The server accepts the following methods:

Footer

Page 34 of 40

10

11

12

13

14

15

16
17

18

19

20

21
22

23

24

Confidential AMQ Protocol (major=10, minor=3)

¢ Dtx.Select (ID=10) - select standard transaction mode : Sync request
¢ Dtx.Start ID=30) - start a new distributed transaction : Sync request

The client accepts the following methods:

¢ Dtx.Select-Ok (ID=20) - confirm transaction mode : Sync response to Select

¢ Dtx.Start-Ok (ID=40) - confirm the start of a new distributed transaction : Sync response to Start

1.1.10.1 The Dtx.Select Method

This method sets the channel to use distributed transactions. The client must use this method at least once on

a channel before using the Start method.
The Select method has the following specific fields:

This is the Select pseudo-structure:

1.1.10.2 The Dix.Select-Ok Method

This method confirms to the client that the channel was successfully set to use distributed transactions.
The Select-Ok method has the following specific fields:

This is the Select-Ok pseudo-structure:

1.1.10.3 The Dtx.Start Method

This method starts a new distributed transaction. This must be the first method on a new channel that uses

the distributed transaction mode, before any methods that publish or consume messages.
The Start method has the following specific fields:

This is the Start pseudo-structure:

1.1.10.4 The Dtx.Start-Ok Method

This method confirms to the client that the transaction started. Note that if a start fails, the server raises a

channel exception.
The Start-Ok method has the following specific fields:

This is the Start-Ok pseudo-structure:

Footer

Page 35 of 40

10
11
12
13
14
15
16
17
18
19
20

21

22

23

24

25
26

27

28

29

30
31
32
33

34

Confidential

AMQ Protocol (major=10, minor=3)

11.11 The Tunnel Class

The tunnel methods are used to send blocks of binary data - which can be serialised AMQP methods or other

protocol frames - between AMQP peers. The ID of the Tunnel Class is 110.

This is the formal grammar for the class:

tunnel C:REQUEST

/ S:REQUEST

>These are the properties defined for $(class.name) content:

- headers (table) -
Message header field table
- proxy name (shortstr) -
The identity of the tunnelling proxy
- data name (shortstr) -
The name or type of the message being tunnelled
- durable (octet) -
The message durability indicator
- broadcast (octet) -
The message broadcast mode

The server accepts the following methods:

¢ Tunnel.Request (ID=10) - sends a tunnelled method : Async

The client accepts the following methods:

11.11.1 The Tunnel.Request Method

This method tunnels a block of binary data, which can be an encoded AMQP method or other data. The

binary data is sent as the content for the Tunnel.Request method.

The Request method has the following specific fields:

This is the Request pseudo-structure:

1112 The Test Class

The test class provides methods for a peer to test the basic operational correctness of another peer. The test

methods are intended to ensure that all peers respect at least the basic elements of the protocol, such as frame

and content organisation and field types. We assume that a specially-designed peer, a "monitor client" would
perform such tests. The ID of the Test Class is 120.

This is the formal grammar for the class:

Footer

Page 36 of 40

© 0o NO O~ WND =

11

12
13
14
15
16
17
18
19

20

21
22
23
24
25
26
27

28

29

30

31

32

33

34

Confidential

AMQ Protocol (major=10, minor=3)

test :INTEGER S:INTEGER-OK
:INTEGER C:INTEGER-OK
:STRING S:STRING-O0K
:STRING C:STRING-O0K
:TABLE S:TABLE-0K
:TABLE C:TABLE-0K
:CONTENT S:CONTENT-0K
:CONTENT C:CONTENT-0K

NN
nounouno no

The server accepts the following methods:

*

*

Test.Integer (ID=10) - test integer handling : Sync request , carries content
Test.Integer-Ok (ID=20) - report integer test result : Sync response to Integer
Test.String (ID=30) - test string handling : Sync request , carries content

Test.String-Ok (ID=40) - report string test result : Sync response to String

Test.Table (ID=50) - test field table handling : Sync request , carries content

Test. Table-Ok (ID=60) - report table test result : Sync response to Table , carries content
Test.Content (ID=70) - test content handling : Sync request

Test.Content-Ok (ID=80) - report content test result : Sync response to Content

The client accepts the following methods:

*

*

*

L 4

Test.Integer (ID=10) - test integer handling : Sync request , carries content
Test.Integer-Ok (ID=20) - report integer test result : Sync response to Integer
Test.String (ID=30) - test string handling : Sync request , carries content

Test.String-Ok (ID=40) - report string test result : Sync response to String

Test. Table (ID=50) - test field table handling : Sync request , carries content
Test.Table-Ok (ID=60) - report table test result : Sync response to Table , carries content
Test.Content (ID=70) - test content handling : Sync request

Test.Content-Ok (ID=80) - report content test result : Sync response to Content

1.1.12.1 The Test.Integer Method

This method tests the peer's capability to correctly marshal integer data.

The Integer method has the following specific fields:

This is the Integer pseudo-structure:

1.1.12.2 The Test.Integer-Ok Method

This method reports the result of an Integer method.

Footer

10

11

12

13

14

15

16

17

18

19

20

21

22

Confidential

AMQ Protocol (major=10, minor=3)

The Integer-Ok method has the following specific fields:

This is the Integer-Ok pseudo-structure:

1.1.12.3 The Test.String Method

This method tests the peer's capability to correctly marshal string data.
The String method has the following specific fields:

This is the String pseudo-structure:

1.1.12.4 The Test.String-Ok Method

This method reports the result of a String method.
The String-Ok method has the following specific fields:

This is the String-Ok pseudo-structure:

1.1.12.5 The Test.Table Method

This method tests the peer's capability to correctly marshal field table data.

The Table method has the following specific fields:

This is the Table pseudo-structure:

1.1.12.6 The Test.Table-Ok Method

This method reports the result of a Table method.
The Table-Ok method has the following specific fields:

This is the Table-Ok pseudo-structure:

1.1.12.7 The Test.Content Method

This method tests the peer's capability to correctly marshal content.
The Content method has the following specific fields:

This is the Content pseudo-structure:

Footer

Page 38 of 40

10
11
12

14

15
16
17

18

19
20

21

22

23

24

25

26

27
28

29

Confidential AMQ Protocol (major=10, minor=3)

1.1.12.8 The Test.Content-Ok Method

This method reports the result of a Content method. It contains the content checksum and echoes the original

content as provided.
The Content-Ok method has the following specific fields:

This is the Content-Ok pseudo-structure:

11.13 The Cluster Class

The cluster methods are used by peers in a cluster. The ID of the Cluster Class is 61440.

This is the formal grammar for the class:

C:HELLO
C:STATUS
C:BIND

cluster

NN

The server accepts the following methods:

¢ Cluster.Hello (ID=10) - greet cluster peer : Async , carries content
o Cluster.Status (ID=20) - provide peer status data : Async , carries content
o Cluster.Bind (ID=30) - bind local exchange to remote exchange : Async , carries content

The client accepts the following methods:

¢ Cluster.Hello (ID=10) - greet cluster peer : Async , carries content
o Cluster.Status (ID=20) - provide peer status data : Async , carries content

o Cluster.Bind (ID=30) - bind local exchange to remote exchange : Async , carries content

11.13.1 The Cluster.Hello Method

This method tells the cluster peer our name and cluster protocol version.
The Hello method has the following specific fields:

This is the Hello pseudo-structure:

1.1.13.2 The Cluster.Status Method

This method provides a cluster peer with status information. We use this method for cluster heartbeating and

synchronisation.

The Status method has the following specific fields:

Footer

Page 39 of 40

Confidential AMQ Protocol (major=10, minor=3)

This is the Status pseudo-structure:

1.1.13.3 The Cluster.Bind Method

This method binds an exchange on one server to an exchange on another server.
The Bind method has the following specific fields:

This is the Bind pseudo-structure:

Footer Page 40 of 40

	1 AMQ Protocol (major=10, minor=3)
	1.1 Class and Method Ids
	1.1.1 The Connection Class
	1.1.1.1 The Connection.Start Method
	1.1.1.2 The Connection.Start-Ok Method
	1.1.1.3 The Connection.Secure Method
	1.1.1.4 The Connection.Secure-Ok Method
	1.1.1.5 The Connection.Tune Method
	1.1.1.6 The Connection.Tune-Ok Method
	1.1.1.7 The Connection.Open Method
	1.1.1.8 The Connection.Open-Ok Method
	1.1.1.9 The Connection.Redirect Method
	1.1.1.10 The Connection.Close Method
	1.1.1.11 The Connection.Close-Ok Method

	1.1.2 The Channel Class
	1.1.2.1 The Channel.Open Method
	1.1.2.2 The Channel.Open-Ok Method
	1.1.2.3 The Channel.Flow Method
	1.1.2.4 The Channel.Flow-Ok Method
	1.1.2.5 The Channel.Alert Method
	1.1.2.6 The Channel.Close Method
	1.1.2.7 The Channel.Close-Ok Method

	1.1.3 The Access Class
	1.1.3.1 The Access.Request Method
	1.1.3.2 The Access.Request-Ok Method

	1.1.4 The Exchange Class
	1.1.4.1 The Exchange.Declare Method
	1.1.4.2 The Exchange.Declare-Ok Method
	1.1.4.3 The Exchange.Delete Method
	1.1.4.4 The Exchange.Delete-Ok Method

	1.1.5 The Queue Class
	1.1.5.1 The Queue.Declare Method
	1.1.5.2 The Queue.Declare-Ok Method
	1.1.5.3 The Queue.Bind Method
	1.1.5.4 The Queue.Bind-Ok Method
	1.1.5.5 The Queue.Purge Method
	1.1.5.6 The Queue.Purge-Ok Method
	1.1.5.7 The Queue.Delete Method
	1.1.5.8 The Queue.Delete-Ok Method

	1.1.6 The Basic Class
	1.1.6.1 The Basic.Consume Method
	1.1.6.2 The Basic.Consume-Ok Method
	1.1.6.3 The Basic.Cancel Method
	1.1.6.4 The Basic.Cancel-Ok Method
	1.1.6.5 The Basic.Publish Method
	1.1.6.6 The Basic.Return Method
	1.1.6.7 The Basic.Deliver Method
	1.1.6.8 The Basic.Get Method
	1.1.6.9 The Basic.Get-Ok Method
	1.1.6.10 The Basic.Get-Empty Method
	1.1.6.11 The Basic.Ack Method
	1.1.6.12 The Basic.Reject Method

	1.1.7 The File Class
	1.1.7.1 The File.Consume Method
	1.1.7.2 The File.Consume-Ok Method
	1.1.7.3 The File.Cancel Method
	1.1.7.4 The File.Cancel-Ok Method
	1.1.7.5 The File.Open Method
	1.1.7.6 The File.Open-Ok Method
	1.1.7.7 The File.Stage Method
	1.1.7.8 The File.Publish Method
	1.1.7.9 The File.Return Method
	1.1.7.10 The File.Deliver Method
	1.1.7.11 The File.Ack Method
	1.1.7.12 The File.Reject Method

	1.1.8 The Stream Class
	1.1.8.1 The Stream.Consume Method
	1.1.8.2 The Stream.Consume-Ok Method
	1.1.8.3 The Stream.Cancel Method
	1.1.8.4 The Stream.Cancel-Ok Method
	1.1.8.5 The Stream.Publish Method
	1.1.8.6 The Stream.Return Method
	1.1.8.7 The Stream.Deliver Method

	1.1.9 The Tx Class
	1.1.9.1 The Tx.Select Method
	1.1.9.2 The Tx.Select-Ok Method
	1.1.9.3 The Tx.Commit Method
	1.1.9.4 The Tx.Commit-Ok Method
	1.1.9.5 The Tx.Rollback Method
	1.1.9.6 The Tx.Rollback-Ok Method

	1.1.10 The Dtx Class
	1.1.10.1 The Dtx.Select Method
	1.1.10.2 The Dtx.Select-Ok Method
	1.1.10.3 The Dtx.Start Method
	1.1.10.4 The Dtx.Start-Ok Method

	1.1.11 The Tunnel Class
	1.1.11.1 The Tunnel.Request Method

	1.1.12 The Test Class
	1.1.12.1 The Test.Integer Method
	1.1.12.2 The Test.Integer-Ok Method
	1.1.12.3 The Test.String Method
	1.1.12.4 The Test.String-Ok Method
	1.1.12.5 The Test.Table Method
	1.1.12.6 The Test.Table-Ok Method
	1.1.12.7 The Test.Content Method
	1.1.12.8 The Test.Content-Ok Method

	1.1.13 The Cluster Class
	1.1.13.1 The Cluster.Hello Method
	1.1.13.2 The Cluster.Status Method
	1.1.13.3 The Cluster.Bind Method

