AMQP

Advanced Message Queuing Protocol

Protocol Specification

Version 0-9 December 2006 [amg-spec]

A General-Purpose Middleware Standard

Technical Contributors:

Sanjay Aiyagari
Matthew Arrot
Mark Atwell
Jason Brome
Alan Conway
Robert Greig
Pieter Hintjens
John O'Hara

Martin Ritchie

Cisco Systems

Twist Process Innovations
JPMorgan Chase

Envoy Technologies

Red Hat

JPMorgan Chase

iMatix Corporation
JPMorgan Chase

JPMorgan Chase

Shahrokh Sadjadi
Rafael Schloming
Steven Shaw
Gordon Sim
Martin Sustrik
Carl Trieloff
Kim van der Riet

Steve Vinoski

Cisco Systems
Red Hat

JPMorgan Chase
Red Hat

iMatix Corporation
Red Hat

Red Hat

IONA Technologies

—_

w

N

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Copyright (c) 2006. All rights reserved. See Notice and License.

Copyright Notice

© Copyright JPMorgan Chase & Co., Cisco Systems, Inc., Envoy Technologies, Inc., iMatix Corporation,
IONA Technologies, Red Hat, Inc., TWIST Process Innovations, and 29West 2006. All rights reserved.

License

JPMorgan Chase & Co., Cisco Systems, Inc., Envoy Technologies, Inc., iMatix Corporation, IONA
Technologies, Red Hat, Inc., TWIST Process Innovations, and 29West (collectively, the "Authors") each
hereby grants to you a worldwide, perpetual, royalty-free, nontransferable, nonexclusive license to (i) copy,
display, distribute and implement the Advanced Messaging Queue Protocol ("AMQP") Specification and (ii)
the Licensed Claims that are held by the Authors, all for the purpose of implementing the Advanced
Messaging Queue Protocol Specification. Your license and any rights under this Agreement will terminate
immediately without notice from any Author if you bring any claim, suit, demand, or action related to the
Advanced Messaging Queue Protocol Specification against any Author. Upon termination, you shall destroy

all copies of the Advanced Messaging Queue Protocol Specification in your possession or control.

As used hereunder, "Licensed Claims" means those claims of a patent or patent application, throughout the
world, excluding design patents and design registrations, owned or controlled, or that can be sublicensed
without fee and in compliance with the requirements of this Agreement, by an Author or its affiliates now or
at any future time and which would necessarily be infringed by implementation of the Advanced Messaging
Queue Protocol Specification. A claim is necessarily infringed hereunder only when it is not possible to
avoid infringing it because there is no plausible non-infringing alternative for implementing the required
portions of the Advanced Messaging Queue Protocol Specification. Notwithstanding the foregoing, Licensed
Claims shall not include any claims other than as set forth above even if contained in the same patent as
Licensed Claims; or that read solely on any implementations of any portion of the Advanced Messaging
Queue Protocol Specification that are not required by the Advanced Messaging Queue Protocol
Specification, or that, if licensed, would require a payment of royalties by the licensor to unaffiliated third
parties. Moreover, Licensed Claims shall not include (i) any enabling technologies that may be necessary to
make or use any Licensed Product but are not themselves expressly set forth in the Advanced Messaging
Queue Protocol Specification (e.g., semiconductor manufacturing technology, compiler technology, object
oriented technology, networking technology, operating system technology, and the like); or (ii) the
implementation of other published standards developed elsewhere and merely referred to in the body of the
Advanced Messaging Queue Protocol Specification, or (iii) any Licensed Product and any combinations
thereof the purpose or function of which is not required for compliance with the Advanced Messaging Queue
Protocol Specification. For purposes of this definition, the Advanced Messaging Queue Protocol
Specification shall be deemed to include both architectural and interconnection requirements essential for
interoperability and may also include supporting source code artifacts where such architectural,
interconnection requirements and source code artifacts are expressly identified as being required or

documentation to achieve compliance with the Advanced Messaging Queue Protocol Specification.

Advanced Message Queuing Protocol Specification v. 0-9 Page 2 of 69

[8)]

14
15
16
17

18
19
20
21

22

23
24

25

26
27

28

29
30

31
32

Copyright (c) 2006. All rights reserved. See Notice and License.

As used hereunder, "Licensed Products” means only those specific portions of products (hardware, software
or combinations thereof) that implement and are compliant with all relevant portions of the Advanced

Messaging Queue Protocol Specification.

The following disclaimers, which you hereby also acknowledge as to any use you may make of the

Advanced Messaging Queue Protocol Specification:

THE ADVANCED MESSAGING QUEUE PROTOCOL SPECIFICATION IS PROVIDED "AS IS," AND
THE AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE
ADVANCED MESSAGING QUEUE PROTOCOL SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF THE ADVANCED MESSAGING QUEUE
PROTOCOL SPECIFICATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,
TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE,
IMPLEMENTATION OR DISTRIBUTION OF THE ADVANCED MESSAGING QUEUE PROTOCOL
SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or publicity
pertaining to the Advanced Messaging Queue Protocol Specification or its contents without specific, written
prior permission. Title to copyright in the Advanced Messaging Queue Protocol Specification will at all

times remain with the Authors.
No other rights are granted by implication, estoppel or otherwise.

Upon termination of your license or rights under this Agreement, you shall destroy all copies of the

Advanced Messaging Queue Protocol Specification in your possession or control.

Status of this Document

"JPMorgan", "JPMorgan Chase", "Chase", the JPMorgan Chase logo and the Octagon Symbol are
trademarks of JPMorgan Chase & Co.

IMATIX and the iMatix logo are trademarks of iMatix Corporation sprl.

IONA, IONA Technologies, and the IONA logos are trademarks of IONA Technologies PLC and/or its

subsidiaries.

LINUX is a trademark of Linus Torvalds. RED HAT and JBOSS are registered trademarks of Red Hat, Inc.

in the US and other countries.

Advanced Message Queuing Protocol Specification v. 0-9 Page 3 of 69

Copyright (c) 2006. All rights reserved. See Notice and License.

Java, all Java-based trademarks and OpenOffice.org are trademarks of Sun Microsystems, Inc. in the United

States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Advanced Message Queuing Protocol Specification v. 0-9 Page 4 of 69

Copyright (c) 2006. All rights reserved. See Notice and License.

Table of Contents

1 O VRIVICW ...tteeitieeiieette et ete e et e et e ettt e bt eetaeessbe e bt easaeeesbeeaseessseeesseeaseeaaseeasseansseenseesssaeasseenbaenasaensseanseennseessseenseeenseennsannnnas 8
1.1 GOAlS Of ThiS DOCUMENL.......eeruiieiieiiiieiieriteeite sttt et e st e et e sttt ebaeeabeesabeeeateeabeessseesssesnsaesnseessseenseesnbeensseenneas 8
L2 PaAlENES. .ceutiieeiieiie ettt ettt et ettt et et e et e st e b e a b e e bt e ht e e bt e ateea bt e eateeabeeehteenb e e eate et eeeabeeabeesateenbeennbeenbeenneas 8
1.3 SUIMIMATY ..ottt ettt et e et e sttt e ettt e sttt e sateesa b e ensteeabaeenbeeeabeeeabeesnbeesabee st eesabeensbeeenbeensseensbeenseas 8

1.3.1 What is the AMQ ProtOCOI7.........oiiiiiieiie ettt e et e e et e e ete e e eae e e e etaeeeaaeaeans 8
1.3.2 Why AMQ PrOtOCOI7.....couiiiiiiiieit ettt sttt et sttt sb et e st et e bt et eebesbeesaeenees 8
1.3.3 Scope of AMQ PrOtOCOL......ccueiuiiiiiiiicictetetetet ettt ettt ettt ettt et eae 9
1.3.4 The Advanced Message Queuing Protocol Model (AMQP Model).......cc.coceeuiriiiiinieiiieieeiiesiieeeene 9
1.3.5 The Advanced Message Queuing Protocol (AMQP).......coceiiiiiiiiiiiinieiieeeeee et 10
1.3.6 Scales Of DEPIOYMENL.......ccouiiiiiiiieeiieetie ettt ettt ettt ettt e b e et e s bt e st esateesabeesateeeabeeasteenbbeennees 11
1.3.7 FUNCHONAL SCOPE......eoiiiiiiiiiiiiiieiteeteteett ettt ettt ettt ettt et b ettt ettt et eb e e bt eb e eate bt eneeean 12
1.4 Organisation of This DOCUMENL.cccuiiiiriiriiiiieitieiteitee ettt ettt ettt et e bt e b s aesaee e e 12
1.5 COMVEINTIONS. ¢..eeeuteeniieeiteette ettt et e et et e et e ettt esbeesaeeeatteesseessseessseenseessbeenseesabeeeaseesseessaeeaseessseenstesnseenseeenseesnseennses 13
1.5.1 Guidelines fOr IMPIEIMENTETS.eovteriiitieeieeiee sttt ettt et te st e et e sebeebtesabeebaessbeenbeesabeenseeeseesnseennnas 13
1.5.2 VErSion NUMDETINE. ... ceouteuteitieuieetieie ettt etteste ettt ettt eat et eate st ee bt she e aesaeesbeeatesbeenseabeesbeenteabeesbeensesbeennean 13
1.5.3 Technical TermMINOLOZYccoutirtiiieriiiieiteeee ettt sttt ettt et sb e bt et sb e sbe et esbeesbeenbesbeenbean 14
1.6 WOTK 11 PIOGI@SS. c..etieitiiieitieeet ettt et h ettt b et b e bt et e bt e e bt et e e bt e sbeenbeebeenbeenne s 16
2 GENETAl ATCHILECTUIE. ...euviieiteetieetieeteesteeeetee ettt estteeteeeteeatseeseessseesssaesseeasseessseansesansaenseesnssaenseennseensseensseenssesnseeanseennss 18
2.1 AMQ Protocol MOdel ATCHILECIUTE.eiieviieeiiee et et eee et e et e e et e e ettt e e eeaaeeeeeaaeeeeaaeeeeeaneeeeareeeans 18
2,11 MAIN ENEEIES...eeitieiieeti ettt ettt e ettt sette et e et eeteesebeesbeenseesabaeenseessaeassaessseenseaenseessseenseeenseeanseennss 18
2. 1.2 MESSAZE FLOW.....eiiiiiiieee ettt ettt e b e et e s bt et esat e e et e e st e e st et e b eae s 21
213 BXCRANGES. ...t et et et e 23
2,14 MESSAZE QUEUES.veeueieretieiieeiteetee ettt eteesabeettesateesttesaseeabeesabeenseesabeenstesaseenstesaseenbeessseenseesaseanseeenseesnseennss 24
2. 1.5 BANAANES ..ttt ettt ettt et e a e s a bt e bt e e bt e st e e bt e e bt e et e e eabeeeabe e abeenbeenaees 25
2.2 AMQ Protocol Command ATCRILECIUTE.........cccviiieiiieiiieeeitieeeeteeestteeeieeeetteeesbeeesreeesssaeesssseeasseesenssaeessseeaans 27
2.2.1 Protocol Commands (Classes & MethOds)........coviiiiiiiiiiiiiiieeiieeeeee et 27
2.2.2 Mapping AMQP to a middleware APL.........cccccocioiiiiiniiiiieeee et 28
2.2.3 INO CONTITMMALIONS. 1. tveetteetieeieetieeteeeteeeteestteeteesteeesseesseessseesseessseesssessseessesasssesesssseesssessseesssessseessesssseensses 29
2.2.4 The CONNECHION CIASS...ccuieiitieeiieitiieiieerieeeiteette et eeteesbeesbeestbeesseeesseesstesseeesseesnseeaseesssessseensseesssesnsees 29
2.2.5 The CRANNE] CLASS.......iiiiieiieeiiieeeeiiie e ettt e sttt e e et e e eetteeeesseeeetseeeassaeesasseaeasssaeseasssaeesssseeesssseeeassssesenssees 30
2.2.0 THE ACCESS ClaSS..eeeeutiiieiiiieeeiieeeeit it e eeitteeeetteeeetteeeaateeeaseaeeansseeeassseesasseaeaassaeeeasssaeesssseaesnssaeeansseesansseens 30
2.2.77 The EXCRANZE ClaSS.....ttiuiiriieiiieiieiiee et eite st ettt e ette st e sttt et e st e e sateebeesabeesateenstesnseesabeenseeebeesnseennses 31
2.2.8 The QUEUE CLASS.....eeeeiiiiieiiieeetiie et eeeeieeestateeetteeeeaeeeesteaeeastseeeassssaesasssaeaassaesassssseesssssaessssaeeassseesansssens 31
2.2.9 The CONENE CIASSES....eeureeerierireeiieitieeteenteesiteestesteestteesseesaeaseesseesssaessseeseeasseessseenssessseesssessseeenseesssesnnses 32
2.2.10 The MESSAZE CIASS.....cuueriiiieeitetieiteettet ettt ettt ettt ettt ettt s e s bt et sb e s bt et e s bt e sbeesbesbeenbeeanesbeenbeen 33

Advanced Message Queuing Protocol Specification v. 0-9 Page 5 of 69

Copyright (c) 2006. All rights reserved. See Notice and License.

2.2.11 The Transaction ClaSS.......ccueeueeiirtieriieieie ettt ettt et et b e et sbte s bt et e sbeesbe e besbeesbeentesbeenneas 34
2.2.12 The Distributed Transaction CLaSS..........cucreeuiiiiririeiierieete ettt sttt sttt et sbee e esaesbeenbeas 34
2.3 AMQ Protocol TranSport ATCHITECUIR.cc.erutiiiruiiiertieieetiete ettt ettt ettt ettt sbe et sbeesbeestesbeesbeennesbeenbeas 34
2.3.1 GENETAl DESCTIPLION.cuvitiiitiieitieteeterte ettt ettt ettt ettt be bttt st b et et et st b sbeebeebeebeeneeneen 34
2.3.2 DAtA TYPES..eteutteemteiiteett ettt ettt et ettt e b et ea e e bttt e b e bt e s bt e a e eat e e eabe e eat e e eate et e nbaeene s 35
2.3.3 ProOtOCO] NEZOUAION. ..c..veiiuiieiieiiiieeieetie ettt ettt sttt et e st e s bt ebeesabtesbtesabeesateesnbeesabeesaseennseensseenses 35
2.3.4 DeliMItiNg FIAMES.coiiiiiiiiiiieiiteie ettt ettt ettt ettt et et e bt e ebee s bt e sbeesabeesabeesabaeennees 36
2.3.5 Frame DEALIS.ccoueiueiriiiiiiiiie ettt ettt et et e h e sb e et an 36
2.3.6 EITOr HanAIING.oooiieiiiiiiieiee ettt ettt ettt ettt e et e e bt e e st e eabeeeabeesateesnbeennseesseenseas 39
2.3.7 Closing Channels and CONNECLIONS........c.couietiruerierieieieieieteteie ettt ettt se s enenennen 39
2.4 AMQ Protocol CHENt ATCHILECTUIE.....c.uiiutiiuieriietieieeteet ettt ettt ettt e ettt eat e et e sbeesbeesbeesbeesbeeaeenbeenneas 39
3 FUNCHONAL SPECITICATION. ...ttt ettt ettt ettt e et e st e s bt e bt ee e e sbe e bt eatenbeesbesatenbeeneeeaeenbeeneesee 42
3.1 Server Functional SPeCIfICAtION.couiriiriiiiiiiiiiceieeteete ettt sttt et ettt 42
3.1.1 MeSSAZES ANA COMERIL.eoueeutieueeitieuteetiet et et et et et e steestesteeatesbeeatesbeenteeseenbeeseenteeneebeebeeneenseenteeneenseeneeans 42
312 VITUAL HOSES. ... cenei ittt ettt ettt e e st e bt et e et e s bt e b et e s st e bt e be et e sbeesaeesueenteeneenns 42
3L 3 EXCRANGZES. ...cuieiiiiieiteieee ettt ettt e e sttt ene s sae e aeeneenn e 43
3.1.4 MESSAZE QUEUES.eouiiiiiniieiteitt ettt ettt et s et e st e e s ae e e e e b e eae et e e e e ne et e e e e eneeneeeas 46
315 BINAINES. .t eutteiieeiiit ettt ettt ettt ettt ettt e et e e bt e e ht e et e e ab e e bt e et e e ea bt e bt e e bt e sabaeenbeeenbeeennee s 46
316 CONSUIMETS. ..cneeutiitieieeetteit ettt st e e e et sate bt e bt et eae e saee bt esteeat e et s e bt e bt easeeasease bt ebeeasesaeesueenneennesanenanenes 47
317 QUALILY OF SEIVICE.....titiiuiiiitiitiete ettt ettt ettt ettt ea e ea bt e bt e bt e bt e sbt e bt e bt entesbtesbeesueenaeeseeas 47
3.1.8 ACKNOWIEAEIMENLS.eouiiiiiiiiiiiieeiteieett ettt ettt ettt ettt ettt ettt et e bt et e eat e bt e bt es e e bt enbeesaenbeeseeens 47
319 FIOW COMNIOL.....eitiieiieeiiecie ettt ete ettt ettt e st e eaeesbeesseeessaeasbeesseeeassaasseesssaeseeesseeanseenseesssaeanseesnseaanseess 47
3.1.10 Naming CONVENTIONS.eeutirtietieieeiteettettete et et eeteesteesteeatessaesbeesbeesbesaeesheesseesseesteenseenbeanbessseasesntesseenns 48
3.2 AMQP Command Specification (Classes & MethOds)..........ccvieriiriariianiiiiiiie et 48
3.2.1 EXPlanatory INOEES.......cocueiuieiiriieieeii ettt ettt ettt ettt sttt et e e bt et e et e eat e e s eneenneeas 48
3.2.2 Class and MEthOd IAS.........uiiiuiieeiieeiiie ettt e e et e e e e et e e e et e e esasteessnsaeeesseessnsseeensseaaens 48

4 TechniCal SPECIIICALIONS.cc.eetieuieiieiieititetiet ettt ettt sa et et ea et ettt ettt sae et e bt eae et est et et et e beneeeuesaeenee 49
4.1 TANA AsSigned POrt INUMDET.......cc.coiiiiiiiiiiiiiiecnee ettt ettt ettt s ne 49
4.2 AMQP Wire-Level FOIMAL..........cccoiiiiiiiieiieeciie ettt e et et eesiv e e estaeesaaeeetseeesssaeessssaeessseeeanssesenssnens 49
4.2.1 Formal ProtoCO] GIamMMAT...........cccuiiieiiiieeiiiieeeitieesieeessteeeeiaeeesesaeessaeeesssaeessssseeasssseesssssaesssessassseesnsees 49
4.2.2 ProtOCO] HEACTcoutiiiiiiiiiiiiiieeet ettt ettt ettt ettt be bttt e enae 52
4.2.3 General Frame FOIMAL..........cocooiiiiiiiiiiicieecnt ettt ettt s 53
4.2.4 MethOd PaYLOAdS. ...c..eetiiiieiiiiieie ettt ettt et sttt st sb et st sb e bt bt et ete e sae 54
4.2.5 AMQP Data FICIAS......ccooiiiiiiiiieiiie et e et e et e e et e e e et e e e tr e e e easee e areaeeeabeeeeanneas 54
4.2.6 CONLENE FLAMING. ..ottt ettt ettt ettt et e ett et et e et e e s te et e e bt enseeneeeneeabeenseenseeneesmeeees 56
4.2.7 OUt-OFf-Band FTAMES........ccoiiiiiiieitiieiiieeciee et eite et e eteesteesae e aeestaeeseeesseeeseesssaeenseesssssesseessseesssesaseensns 58
4.2.8 TTACE FTAIMES....c..eiuiiiiiiiiieiec ettt et ettt ettt ae e s saeeae st e st enae e sae 58

Advanced Message Queuing Protocol Specification v. 0-9 Page 6 of 69

Copyright (c) 2006. All rights reserved. See Notice and License.

4.2.9 HEartbeat FIaMIES.couiiiiiiieiieitiee ettt ettt ettt ettt b e bt es e eat e s st e s b e e nbeenbeentesaeeee 58
4.2.10 ReQUESE FIAMIES. ..ottt ettt sttt et sb et st sb et sa e sbe et bt et entesaeesae 59
4.2.11 RESPONSE FTAIMES.oiiiiiiiiiiiiiieiiei et sttt ettt 59

E G Oy b 1110 15 I\ 10 LT o) 55 €14V 60
4.4 REQUEST/RESPONSE.couiiiiiiiiiieiieiet ettt ettt et e e a e ae e et et a e e st esae e st eae e saie 60
N 2 T (] 1111V OSSPSR 60
A2 FAIl OVET ...ttt ettt et sttt st ettt ettt et as e bt b e an e s bt e b et aee 61
4.3 OTAETING. ..ttt ettt ettt ettt et e sttt e e st et e s ab e e e at e e bt e s bt e sht e enbeeeabeesabeeasbeeabeeeabeesateebaeeabeesabeebeeeane 62
44,4 SEQUENCE INUIMDEIS.euiiiiiiiiiiiiterteet ettt ettt ettt et a et sttt sb et b et e bt et e e bt eatesbeentesbeenaesmeenae 62
4.4.5 Shared SUCCESS RESPOMISE.ccuuviiiiieiiieiieeiie ettt sttt e st ste et et e sabeesabeesataeebeesbneensbeennseesnseesnseennne 63
4.4.6 Changes to other Classes on completion of Work in Progress..........ccooeeverieiiiiienieneiceeeeeceeee 63
4.4.7 Related Changes still being worked by the SIG........c.cooiiiiiiiiiiiiieiieee e e 63
4.5 BIrOr HANAIINE. ..coveiieiiiiiieeeee ettt ettt et sb e ettt sb et sht e sb e ettt e sate e it sae 65
45,1 EXCEPLIOMS. ...ttt ettt ettt et e a et sa e et eae e s e eae e e eneeaeeae e st ae e eae 65
4.5.2 RePLY COA@ FOIMAL.......eiitiiiieieeiiee ettt ettt ettt et sttt et e bt e st e b e e bt eseesbeenbeenbeeneesneenes 65
4.5.3 Channel EXception REPLY COAES.cccuuiruiiiriiiiiiiiieiieeite sttt ettt ettt ettt e sbte st e sabeenaeeenne 66
4.5.4 Connection EXception Reply COAES.......cccuiiiiiiiiiiiiieiiieiiie ettt sttt ettt st eeree e 66
LIMIEATIONS. ...ttt ettt et ettt et e bttt e et e et e e e saeesse s bt e e e s bt e e s he e aeeaneeu e s heenesaeeanees 66
210 SECUTTLY .t eutteiteeitte ettt ettt et ettt et e ettt e st e s bt e e st e e bt e e bt ebtesab e e st e eat e e bt e eab e e b e e e as b e eateenbbeeabeesabeensbeebeeeabeesabeenbteeabeenn 67
4.6.1 GOAls AN PIINCIPIES. .. .eouviriiiiiiiiiete ittt ettt sttt ettt sttt bbb e nae 67
4.6.2 Denial Of SEIVICE ATLACKS.cc.virtiiriiitiritieiteet ettt ettt ettt et ettt ettt sbt ettt bee e 67

5 CONFOIMANCE TESTS....c.veeutitieiiirieeie ittt ettt ettt ettt ettt ettt s bt et bt et s bt e te e bt et e ets e bt eat et e e bt enbe et e eabe bt enbeeanenseeneeas 68
5.1 TIEFOQUCTION. ...ttt ettt ee et et a e bt s bt et et e e st e s bt e sbeenbe e st e eht et e e bt et e ebeesbeenbeenne s 68
5.2 DIBSIZN ettt bt et h et h et et h et h e e s bbb e bt et esb e e s bt et eb e bt et bt enbean 68
5.2.1 “Test Sets” group Tests into meaningful capabilities..........ccooeriiriiniiiiiiiiriiiniicee e 68
5.2.2 WHTE-LEVE] TS, ..c..eetieuiieiieie ettt ettt ettt ettt e bt e e s bt e st e e bt eateeb e e sbeembesbeesbeenbeabeesbeentesneennean 68
5.2.3 FUNCHONAL T@SES....euttiuietietieiteit ettt et ettt et h et et s bt et e et e e bt et e eb b e eb e embeebeeebeenbeebeeebeenbeensean 69
5.3 TSt SEES..euteuttente ettt ettt ettt ettt ettt ettt e st ekt e bt eh e et e a e e bt e st e bt e st e bt e et e bt ea et e b e en b e ekt en bt ekt et e ehe e bt ente bt entenbeentenbean 69

Advanced Message Queuing Protocol Specification v. 0-9 Page 7 of 69

—_

10
11
12

13
14
15

16

17

18
19

20

21
22
23

24
25
26

Copyright (c) 2006. All rights reserved. See Notice and License. Overview

1 Overview

1.1 Goals of This Document

This document defines a networking protocol, the Advanced Message Queuing Protocol (AMQP), which
enables conforming client applications to communicate with conforming messaging middleware services.

To fully achieve this we also define the normative behaviour of the messaging middleware service.

We address a technical audience with some experience in the domain, and we provide sufficient
specifications and guidelines that a suitably skilled engineer can construct conforming solutions in any

modern programming language or hardware platform.

1.2 Patents

A concious design objective of AMQP was to base it on concepts taken from existing, unencumbered, widely
implemented standards such those published by the Internet Engineering Task Force (IETF) or the World
Wide Web Consortium (W3C).

Consequently, we believe it is possible to create AMQP implementations using only well known techniques
such as those found in existing Open Source networking and email routing software or which are otherwise

well-known to technology experts.
1.3 Summary

1.31 What is the AMQ Protocol?

The Advanced Message Queuing Protocol (AMQ Protocol or AMQP) creates full functional interoperability
between conforming clients and messaging middleware servers (also called "brokers").

1.3.2 Why AMQ Protocol?

Our goal is to enable the development and industry-wide use of standardised messaging middleware
technology that will lower the cost of enterprise and systems integration and provide industrial-grade

integration services to a broad audience.

It is our aim that through AMQ Protocol messaging middleware capabilities may ultimately be driven into
the network itself, and that through the pervasive availability of messaging middleware new kinds of useful

applications may be developed.

Advanced Message Queuing Protocol Specification v. 0-9 Page 8 of 69

10
11

12

13
14

15

16
17

18
19

20
21

22
23

24
25
26

27
28
29
30

31
32

Copyright (c) 2006. All rights reserved. See Notice and License. Overview

1.3.3 Scope of AMQ Protocol

To enable complete interoperability for messaging middleware requires that both the networking protocol

and the semantics of the broker services are sufficiently specified.
AMQP, therefore, defines both the network protocol and the broker services through:

¢ A defined set of messaging capabilities called the "Advanced Message Queuing Protocol Model"
(AMQP Model). The AMQP Model consists of a set of components that route and store messages within

the broker service, plus a set of rules for wiring these components together.

¢ A network wire-level protocol, AMQP, that lets client applications talk to the broker and interact with
the AMQP Model it implements.

One can partially imply the semantics of the server from the AMQP protocol specifications but we believe

that an explicit description of these semantics helps the understanding of the protocol.

1.3.4 The Advanced Message Queuing Protocol Model (AMQP Model)

We define the server's semantics explicitly, since interoperability demands that these be the same in any

given server implementation.
The AMQP Model thus specifies a modular set of components and standard rules for connecting these.

There are three main types of component, which are connected into processing chains in the server to create

the desired functionality:

¢ The "exchange" receives messages from publisher applications and routes these to "message queues”,

based on arbitrary criteria, usually message properties or content

¢ The "message queue" stores messages until they can be safely processed by a consuming client

application (or multiple applications)

¢ The "binding" defines the relationship between a message queue and an exchange and provides the

message routing criteria

Using this model we can emulate the classic middleware concepts of store-and-forward queues and topic
subscriptions trivially. We can also expresses less trivial concepts such as content-based routing, message

queue forking, and on-demand message queues.

In very gross terms, an AMQP server is analogous to an email server, with each exchange acting as a
message transfer agent, and each message queue as a mailbox. The bindings define the routing tables in each
transfer agent. Publishers send messages to individual transfer agents, which then route the messages into

mailboxes. Consumers take messages from mailboxes.

In many pre-AMQP middleware system, by contrast, publishers send messages directly to individual

mailboxes (in the case of store-and-forward queues), or to mailing lists (in the case of topic subscriptions).

Advanced Message Queuing Protocol Specification v. 0-9 Page 9 of 69

10

11
12

13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31
32

33
34

35
36

37

Copyright (c) 2006. All rights reserved. See Notice and License. Overview

The difference is that when the rules connecting message queues to exchanges are under control of the
architect (rather than embedded in code), it becomes possible to do interesting things, such as define a rule

that says, "place a copy of all messages containing such-and-such a header into this message queue".
The design of the AMQP Model was driven by these main requirements:

¢ To support the semantics required by the financial services industry

¢ To provide the levels of performance required by the financial services industry

¢ To be easily extended for new kinds of message routing and queueing

¢ To permit the server's specific semantics to be programmed by the application, via the protocol

& To be flexible yet simple.

1.3.5 The Advanced Message Queuing Protocol (AMQP)

The AMQP protocol is a binary protocol with modern features: it is multi-channel, negotiated, asynchronous,

secure, portable, neutral, and efficient.

AMAQP is usefully split into two layers:

Basic File transfer Transactions Exchanges

Message queues Access control Streaming

Framing Content Data representation

Error handling Heart-beating Channels

The functional layer defines a set of commands (grouped into logical classes of functionality) that do useful

work on behalf of the application.

The transport layer that carries these methods from application to server, and back, and which handles

channel multiplexing, framing, content encoding, heart-beating, data representation, and error handling.

One could replace the transport layer with arbitrary transports without changing the application-visible

functionality of the protocol. One could also use the same transport layer for different high-level protocols.

The design of AMQ Protocol Model was driven by these requirements:

Advanced Message Queuing Protocol Specification v. 0-9 Page 10 of 69

10
11
12
13
14
15
16
17
18
19
20

21

22

23

24

25
26
27
28
29
30

31
32

Copyright (c) 2006. All rights reserved. See Notice and License. Overview

*

*

To guarantee interoperability between conforming implementations

To provide explicit control over the quality of service

To support any middleware domain: messaging, file transfer, streaming, RPC, etc
To accommodate existing messaging API standards (for example, Sun's JMS)

To be consistent and explicit in naming

To allow complete configuration of server wiring via the protocol

To use a command notation that maps easily into application-level API's

To be clear, so each operation does exactly one thing.

The design of AMQP transport layer was driven by these main requirements, in no particular order:

To be compact, using a binary encoding that packs and unpacks rapidly
To handle messages of any size without significant limit

To permit zero-copy data transfer (e.g. remote DMA)

To carry multiple channels across a single connection

To be long-lived, with no significant in-built limitations

To allow asynchronous command pipe-lining

To be easily extended to handle new and changed needs

To be forward compatible with future versions

To be repairable, using a strong assertion model

To be neutral with respect to programming languages

To fit a code generation process.

Note: This section should be updated to include the features from the request/response transport.

1.3.6 Scales of Deployment

The scope of AMQP covers different levels of scale, roughly as follows:

L 4

*

Developer/casual use: 1 server, 1 user, 10 message queues, 1 message per second

Production application: 2 servers, 10-100 users, 10-50 message queues, 10 messages per second (36K
messages/hour)

Departmental mission critical application: 4 servers, 100-500 users, 50-100 message queues, 100
messages per second (360K/hour)

Regional mission critical application: 16 servers, 500-2,000 users, 100-500 message queues and topics,

1000 messages per second(3.6M/hour)

Global mission critical application: 64 servers, 2K-10K users, 500-1000 message queues and topics,

10,000 messages per second(36M/hour)

Advanced Message Queuing Protocol Specification v. 0-9 Page 11 of 69

10
11
12

13

14

15
16

17

18
19

20
21
22
23

24
25
26
27

28
29
30
31
32

Copyright (c) 2006. All rights reserved. See Notice and License. Overview

*

Market data (trading): 200 servers, SK users, 10K topics, 100K messages per second (360M/hour)

As well as volume, the latency of message transfer can be highly important. For instance, market data

becomes worthless very rapidly. Implementations may differentiate themselves by providing differing

Quality of Service or Manageability Capabilities whilst remaining fully compliant with this specification.

1.3.7 Functional Scope

We want to support a variety of messaging architectures:

*

Store-and-forward with many writers and one reader
Transaction distribution with many writers and many readers
Publish-subscribe with many writers and many readers
Content-based routing with many writers and many readers
Queued file transfer with many writers and many readers
Point-to-point connection between two peers

Market data distribution with many sources and many readers.

1.4 Organisation of This Document

The document is divided into five chapters, most of which are designed to be read independently according

to your level of interest:

1.
2.

"Overview" (this chapter). Read this chapter for an introduction

"General Architecture”, in which we describe the architecture and overall design of AMQP. This

chapter is intended to help systems architects understand how AMQP works

. "Functional Specifications", in which we define how applications work with AMQP. This chapter

consists of a readable discussion, followed by a detailed specification of each protocol command,
intended as a reference for implementers. Before reading this chapter you should read the General

Architecture

. "Technical Specifications", in which we define how the AMQP transport layer works. This chapter

consists of a short discussion, followed by a detailed specification of the wire-level constructs, intended
as a reference for implementers. You can read this chapter by itself if you want to understand how the

wire-level protocol works (but not what it is used for)

. "Conformance Tests", in which we explain the conformance tests, which assert that an AMQP server

conforms to the functional and technical specifications defined in this document. You can read this

chapter by itself

. "Background", in which we state and analyse the scope and requirements of the AMQP standard and

describe some of the underlying motivations behind the most important features of the protocol. This

Advanced Message Queuing Protocol Specification v. 0-9 Page 12 of 69

10
11

12
13
14
15

16
17

18
19

20

21
22
23

24

25
26
27

28
29
30

Copyright (c) 2006. All rights reserved. See Notice and License. Overview

chapter comes last because it is not part of the knowledge needed to write an AMQP implementation, but
it does provide useful background understanding. Note that the specification chapters include statements

of key requirements, without analysis.

1.5 Conventions

1.5.1 Guidelines for Implementers

We use the terms MUST, MUST NOT, SHOULD, SHOULD NOT, and MAY as defined by IETF RFC
2119

We use the term "the server” when discussing the specific behaviour required of a conforming AMQP

Server

We use the term "the client" when discussing the specific behaviour required of a conforming AMQP

client
We use the term "the peer" to mean "the server or the client”
All numeric values are decimal unless otherwise indicated

Protocol constants are shown as upper-case names. AMQP implementations SHOULD use these names
when defining and using constants in source code and documentation
Property names, method arguments, and frame fields are shown as lower-case names. AMQP

implementations SHOULD use these names consistently in source code and documentation.

Names in AMQP are case-sensitive. For example, “amq.Direct” specifies a different exchange from

“amgq.direct”.

1.5.2 Version Numbering

The AMQ Protocol version is expressed using two numbers — the major number and the minor number. By

convention, the version is expressed as the major, number followed by a dash, followed by the minor

number. (For example, 1-3 is major = 1, minor = 3.)

*

*

Major and minor numbers may take any value between 0 and 255 inclusive.

Minor numbers are incremented with the major version remaining unchanged. When the AMQP working
group decides that a major version is appropriate, the major number is incremented, and the minor
number is reset to 0. Thus, a possible sequence could be 1-2, 1-3, 1-4, 2-0, 2-1...

Once the protocol reaches production (major >= 1), minor numbers greater than 9 would be strongly
discouraged. However, prior to production (versions 0-x), this may occur owing to the rapid and

frequent revisions of the protocol.

Advanced Message Queuing Protocol Specification v. 0-9 Page 13 of 69

10
11

12
13
14
15

16

17
18

19
20

21
22

23
24

25
26

27
28

29

30
31

32

33
34

Copyright (c) 2006. All rights reserved. See Notice and License. Overview

*

Once the protocol reaches production (major >=1), backwards compatibility between minor versions of
the same major version must be guaranteed by implementers. Conversely, backwards compatibility

between minor versions prior to production is neither guaranteed nor expected.
Major versions numbers of 99 and above are reserved for internal testing and development purposes.

The rule which divides the major byte in the AMQP header by 10 to achieve the major number used in
version 0-8 of this protocol is discontinued. The major version is stored directly in the major byte and

the minor number directly in the minor byte. (See 4.2.2 Protocol Header on page 52 for details.)

1.5.3 Technical Terminology

These terms have special significance within the context of this document:

*

AMQP Command Architecture: An encoded wire-level protocol command which executes actions on
the state of the AMQP Model Architecture.

AMQP Model Architecture: A logical framework representing the key entities and semantics which
must be made available by an AMQP compliant server implementation, such that the server can be
meaningfully manipulated by AMQP Commands sent from a client in order to achieve the semantics

defined in this specification.
Connection: A network connection, e.g. a TCP/IP socket connection

Channel: A bi-directional stream of communications between two AMQP peers. Channels are

multiplexed so that a single network connection can carry multiple channels

Client: The initiator of an AMQP connection or channel. AMQP is not symmetrical. Clients produce

and consume messages while servers queue and route messages

Server: The process that accepts client connections and implements the AMQP message queueing and

routing functions. Also known as "broker"

Peer: Either party in an AMQP connection. An AMQP connection involves exactly two peers (one is

the client, one is the server)

Frame: A formally-defined package of connection data. Frames are always written and read

contiguously - as a single unit - on the connection

Protocol Class: A collection of AMQP commands (also known as Methods) that deal with a specific
type of functionality

Method: A specific type of AMQP command frame that passes instructions from one peer to the other

Content: Application data passed from client to server and from server to client. AMQP content can be

structured into multiple parts. The term is synonymous with "message"
Content Header: A specific type of frame that describes a content's properties

Content Body: A specific type of frame that contains raw application data. Content body frames are

entirely opaque - the server does not examine or modify these in any way

Advanced Message Queuing Protocol Specification v. 0-9 Page 14 of 69

10

11
12

13

14

15

16
17
18

19
20
21

22

23

24
25

26
27
28

29
30

31

32

33

Copyright (c) 2006. All rights reserved. See Notice and License. Overview

*

L 4

Message: Synonymous with "content”

Exchange: The entity within the server which receives messages from producer applications and

optionally routes these to message queues within the server

Exchange Type: The algorithm and implementation of a particular model of exchange. In contrast to

the "exchange instance", which is the entity that receives and routes messages within the server
Message queue: A named entity that holds messages and forwards them to consumer applications.
Binding: An entity that creates a relationship between a message queue and an exchange

Routing key: A virtual address that an exchange may use to decide how to route a specific message
Durable: A server resource that survives a server restart

Transient: A server resource that is wiped or reset after a server restart

Persistent: A message that the server holds on reliable disk storage and MUST NOT lose after a server

restart

Non-persistent: A message that the server holds in memory and MAY lose after a server restart
Consumer: A client application that requests messages from a message queue

Producer: A client application that publishes messages to an exchange

Virtual host: A collection of exchanges, message queues and associated objects. Virtual hosts are
independent server domains that share a common authentication and encryption environment. The

client application chooses a virtual host after logging in to the server

Realm: A set of server resources (exchanges and message queues) covered by a single security policy
and access control. Applications ask for access rights for specific realms, rather than for specific

resources
Ticket: A token that a server provides to a client, for access to a specific realm
Streaming: The process by which the server will send messages to the client at a pre-arranged rate

Staging: The process by which a peer will transfer a large message to a temporary holding area before

formally handing it over to the recipient. This is how AMQP implements re-startable file transfers

Out-of-band transport: The technique by which data is carried outside the network connection. For
example, one might send data across TCP/IP and then switch to using shared memory if one is talking to

a peer on the same system

Zero copy: The technique of transferring data without copying it to or from intermediate buffers. Zero

copy requires that the protocol allows the out-of-band transfer of data as opaque blocks, as AMQP does
Assertion: A condition that must be true for processing to continue

Exception: A failed assertion, handled by closing either the Channel or the Connection

These terms have no special significance within the context of AMQP:

Advanced Message Queuing Protocol Specification v. 0-9 Page 15 of 69

10
11
12

13

14
15
16
17
18

19
20
21
22

23
24
25
26
27
28
29
30
31
32
33

34

Copyright (c) 2006. All rights reserved. See Notice and License. Overview

¢ Topic: Usually a means of distributing messages; AMQP implements topics using one or more types of
exchange
¢ Subscription: Usually a request to receive data from topics; AMQP implements subscriptions as

message queues and bindings

¢ Service: Usually synonymous with server. The AMQP standard uses "server" to conform with IETF
standard nomenclature and to clarify the roles of each party in the protocol (both sides may be AMQP

services)

¢ Broker: synonymous with server. The AMQP standard uses the terms "client" and "server" to conform

with IETF standard nomenclature.

¢ Router: Sometimes used to describe the actions of an exchange. However exchanges can do more than
message routing (they can also act as message end-points), and the term "router” has special significance

in the network domain, so AMQP avoids using it.

1.6 Work in Progress

This version of the specification describes additional classes and methods for reliable transport. Some of the
features of the basic, stream and file classes are combined into a new class called message, a high reliability
transport. Other issues addressed by the new message class include header reordering, allowing for batching
of asynchronous responses, and moving away from a dependence on TCP so that AMQP may also be

deployed on other protocols.

These new classes and methods should be considered “work in progress” for the duration of this version, and
are included here to allow for a test implementation to be developed. This means that these classes are
subject to change. It is the intention of the AMQP Working Group to deprecate the basic, stream and file

classes in favour of the message class in a future release of this specification.

The sections of this document and/or the XML specification file which concern these classes/methods will be
clearly marked as “work in progress”. They are:
+ In the XML specification: message, channel.ping, channel.pong, and channel.ok;
¢ 2.2.10 The Message Class
& 2.3.5.5 Request and Response Frames
¢ 4.2.5.6 Content
¢ 4.2.10 Request Frames
¢ 4.2.11 Response Frames
& 4.4 Request/Response
¢ 4.4.1 Batching
¢ 4.4.2 Fail Over
¢ 4.4.3 Ordering

Advanced Message Queuing Protocol Specification v. 0-9 Page 16 of 69

Copyright (c) 2006. All rights reserved. See Notice and License. Overview

¢ 4.4 Sequence Numbers
¢ 4.4.5 Shared Success Response

& 4.4.6 Related Changes still being worked by the SIG

Advanced Message Queuing Protocol Specification v. 0-9 Page 17 of 69

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

27
28
29
30
31
32
33
34
35

36
37

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

2 General Architecture

2.1 AMQ Protocol Model Architecture

This section explains the server semantics that must be standardised in order to guarantee interoperability

between AMQP implementations.

211 Main Entities

This diagram shows the overall AMQ Protocol Model:

Server
o +
| Virtual host [
| o + |
| | Exchange | |

Fom + | | +—m + | |
| Publisher | --——-—-----—- > | | |
| application | | | +o——t———+ | |
oo T | |
| | Message | |
| | Queue | |
Fom + | | +—m + | |
| Consumer | €e===m===== o ———— + | |
| application | | | o ———— + | |
Fom + | | +—m + | |
| o + |
e ittt +

We can summarise what a middleware server is: it is a data server that accepts messages and does two main
things with them, it routes them to different consumers depending on arbitrary criteria, and it buffers them in

memory or on disk when consumers are not able to accept them fast enough.

In a pre-AMQP server these tasks are done by monolithic engines that implement specific types of routing
and buffering. The AMQ Protocol Model takes the approach of smaller, modular pieces that can be
combined in more diverse and robust ways. It starts by dividing these tasks into two distinct roles:
¢ The exchange, which accepts messages from producers and routes them message queues
¢ The message queue, which stores messages and forwards them to consumer applications
There is a clear interface between exchange and message queue, called a "binding", which we will come to
later. The usefulness of the AMQ Protocol Model comes from three main features:

1. The ability to create arbitrary exchange and message queue types (some are defined in the standard, but

others can be added as server extensions)

2. The ability to wire exchanges and message queues together to create any required message-processing

system

Advanced Message Queuing Protocol Specification v. 0-9 Page 18 of 69

10
11
12

13
14

15
16

17

18
19

20

21
22
23
24

25
26

27
28
29
30
31
32

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

3. The ability to control this completely through the protocol

In fact, AMQP provides runtime-programmable semantics.

2111 The Message Queue

A message queue stores messages in memory or on disk, and delivers these in sequence to one or more
consumer applications. Message queues are message storage and distribution entities. Each message queue

is entirely independent and is a reasonably clever object.

A message queue has various properties: private or shared, durable or temporary, client-named or server-
named, etc. By selecting the desired properties we can use a message queue to implement conventional

middleware entities such as:

¢ A standard store-and-forward queue, which holds messages and distributes these between consumers
on a round-robin basis. Store and forward queues are typically durable and shared between multiple

consumers

¢ A temporary reply queue, which holds messages and forwards these to a single consumer. Reply

queues are typically temporary, server-named, and private to one consumer

¢ A "pub-sub" subscription queue, which holds messages collected from various "subscribed" sources,

and forwards these to a single consumer.

Subscription queues are typically temporary, server-named, and private to one consumer.

These categories are not formally defined in AMQP: they are examples of how message queues can be used.

It is trivial to create new entities such as durable, shared subscription queues.

2.1.1.2 The Exchange

An exchange accepts messages from a producer application and routes these to message queues according to
pre-arranged criteria. These criteria are called "bindings". Exchanges are matching and routing engines.
That is, they inspect messages and using their binding tables, decide how to forward these messages to

message queues or other exchanges. Exchanges never store messages.

The term "exchange" is used to mean both a class of algorithm, and the instances of such an algorithm. More

properly, we speak of the "exchange type" and the "exchange instance".

AMAQP defines a number of standard exchange types, which cover the fundamental types of routing needed
to do common message delivery. AMQP servers will provide default instances of these exchanges.
Applications that use AMQP can additionally create their own exchange instances. Exchange types are
named so that applications which create their own exchanges can tell the server what exchange type to use.
Exchange instances are also named so that applications can specify how to bind queues and publish

messages.

Advanced Message Queuing Protocol Specification v. 0-9 Page 19 of 69

E ¢ I \V)

10

11

12
13

14

15

16
17
18

19
20
21
22

23
24

25

26
27
28

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

Exchanges can do more than route messages. They can act as intelligent agents that work from within the

server, accepting messages and producing messages as needed. The exchange concept is intended to define a

model for adding extensibility to AMQP servers in a reasonably standard way, since extensibility has some

impact on interoperability.

2.1.1.3 The Routing Key

In the general case an exchange examines a message's properties, its header fields, and its body content, and

using this and possibly data from other sources, decides how to route the message.

In the majority of simple cases the exchange examines a single key field, which we call the "routing key".

The routing key is a virtual address that the exchange may use to decide how to route the message.

For point-to-point routing, the routing key is the name of a message queue.

For topic pub-sub routing, the routing key is the topic hierarchy value.

In more complex cases the routing key may be combined with routing on message header fields and/or its

content.

2.1.1.4 Analogy to Email

If we make an analogy with an email system we see that the AMQP concepts are not radical:

L 4

*

*

*

an AMQP message is analogous to an email message
a message queue is like a mailbox
a consumer is like a mail client that fetches and deletes email

a exchange is like a MTA (mail transfer agent) that inspects email and decides, on the basis of routing

keys and tables, how to send the email to one or more mailboxes

a routing key corresponds to an email To: or Cc: or Bec: address, without the server information (routing

is entirely internal to an AMQP server)

each exchange instance is like a separate MTA process, handling some email sub-domain, or particular

type of email traffic

a binding is like an entry in a MTA routing table.

The power of AMQP comes from our ability to create queues (mailboxes), exchanges (MTA processes), and

bindings (routing entries), at runtime, and to chain these together in ways that go far beyond a simple

mapping from "to" address to mailbox name.

Advanced Message Queuing Protocol Specification v. 0-9 Page 20 of 69

[8)]

O © o N O

11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30

31

32
33
34
35

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

We should not take the email-AMQP analogy too far: there are fundamental differences. The challenge in
AMQP is to route and store messages within a server, or SMTP' parlance calls them “autonomous systems”.

By contrast, the challenge in email is to route messages between autonomous systems.

Routing within a server and between servers are distinct problems and have distinct solutions, if only for

banal reasons such as maintaining transparent performance.

To route between AMQP servers owned by different entities, one sets up explicit bridges, where one AMQP
server acts and the client of another server for the purpose of transferring messages between those separate
entities. This way of working tends to suit the types of businesses where AMQP is expected to be used,
because these bridges are likely to be underpinned by business processes, contractual obligations and

security concerns. This model also makes AMQP 'spam' more difficult.

2.1.2 Message Flow

This diagram shows the flow of messages through the AMQP Model server:

o + o +
| Publisher | ———---o-——— > |Message|
| application | +o——t———+
Fom + |
|
o +
|Exchange |
to———t————t
|
o o +
| | |
Message Message Message
Queue Queue Queue
o + to—————— + o + o +
| Consumer | e + - + e +
| application | <---- |Message| t——————— + fm—m +
o + to—————— + o + o +

2.1.21 Message Life-cycle
An AMQP message consists of a set of properties plus opaque content.

A new “message” is created by a producer application using an AMQP client API. The producer places
“content” in the message and perhaps sets some message “properties”. The producer labels the message with
“routing information”, which is superficially similar to an address, but almost any scheme can be created.

The producer then sends the message to an “exchange” on the server.

' SMTP is the Simple Mail Transport Protocol as defined by the IETF.

Advanced Message Queuing Protocol Specification v. 0-9 Page 21 of 69

w

N o o s

10
11

12
13
14
15

16
17
18

19
20

21

22
23
24
25

26
27
28

29

30
31
32

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

When the message arrives at the server, the exchange (usually) routes the message to a set of message
“queues” which also exist on the server. If the message is unroutable, the exchange may drop it silently or

return it to the producer. The producer chooses how unroutable messages are treated.

A single message can exist on many message queues. The server can handle this in different ways, by
copying the message, by using reference counting, etc. This does not affect interoperability. However, when
a message is routed to multiple message queues, it is identical on each message queue. There is no unique

identifier that distinguishes the various copies.

When a message arrives in a message queue, the message queue tries immediately to pass it to a consumer
application via AMQP. If this is not possible, the message queue stores the message (in memory or on disk
as requested by the producer) and waits for a consumer to be ready. If there are no consumers, the message

queue may return the message to the producer via AMQP (again, if the producer asked for this).

When the message queue can deliver the message to a consumer, it removes the message from its internal
buffers. This can happen immediately, or after the consumer has acknowledged that it has successfully
processed the message. The consumer chooses how and when messages are ‘“acknowledged”. The

consumer can also reject a message (a negative acknowledgement).

Producer messages and consumer acknowledgements are grouped into “transactions”. When an application
plays both roles, which is often, it does a mix of work: sending messages and sending acknowledgements,

and then committing or rolling back the transaction.

Message deliveries from the server to the consumer are not transacted; it is sufficient to transact the

acknowledgements to these messages

2.1.2.2 What The Producer Sees

By analogy with the email system, we can see that a producer does not send messages directly to a message
queue. Allowing this would break the abstraction in the AMQP Model. It would be like allowing email to
bypass the MTA's routing tables and arrive directly in a mailbox. This would make it impossible to insert

intermediate filtering and processing, spam detection, for instance.

The AMQP Model uses the same principle as an email system: all messages are sent to a single point, the
exchange or MTA, which inspects the messages based on rules and information that are hidden from the

sender, and routes them to drop-off points that are also hidden from the sender.

2.1.2.3 What The Consumer Sees

Our analogy with email starts to break down when we look at consumers. Email clients are passive - they
can read their mailboxes, but they do not have any influence on how these mailboxes are filled. An AMQP

consumer can also be passive, just like email clients. That is, we can write an application that expects a

Advanced Message Queuing Protocol Specification v. 0-9 Page 22 of 69

10

11
12

13

14
15
16

17

18
19

20
21
22

23
24

25

26

27
28

29

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

particular message queue to be ready and bound, and which will simply process messages off that message

queue.
However, we also allow AMQP client applications to:

+ create or destroy message queues

¢ define the way these message queues are filled, by making bindings

¢ select different exchanges which can completely change the routing semantics

This is like having an email system where one can, via the protocol:

¢ create a new mailbox

« tell the MTA that all messages with a specific header field should be copied into this mailbox
+ completely change how the mail system interprets addresses and other message headers

We see that AMQP is more like a language for wiring pieces together than a system. This is part of our

objective, to make the server behaviour programmable via the protocol.

2.1.2.4 Automatic Mode

Most integration architectures do not need this level of sophistication. Like the amateur photographer, a
majority of AMQP users need a "point and shoot" mode. AMQP provides this through the use of two
simplifying concepts:

¢ adefault exchange for message producers

¢ adefault binding for message queues that selects messages based on a match between routing key and

message queue name

In effect, the default binding lets a producer send messages directly to a message queue, given suitable
authority — it emulates the simplest “send to destination” addressing scheme people have come to expect of

traditional middleware.

The default binding does not prevent the message queue from being used in more sophisticated ways. It
does, however, let one use AMQP without needing to understand how exchanges and bindings work.

2.1.3 Exchanges

2.1.3.1 Types of Exchange

Each exchange type implements a specific routing algorithm. There are a number of standard exchange

types, explained in the "Functional Specifications" chapter, but there are two that are particularly important:

« the "direct" exchange type, which routes on a routing key

Advanced Message Queuing Protocol Specification v. 0-9 Page 23 of 69

10
11
12

13
14

15

16

17

18
19
20

21
22

23
24

25

26

27
28

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

« the "topic" exchange type, which routes on a routing pattern

Note that:

1. the default exchange is a “direct” exchange

2. the server will create a “direct” and a “topic” exchange at start-up with well-known names and client

applications may depend on this

2.1.3.2 Exchange Life-cycle

Each AMQP server pre-creates a number of exchanges (more pedantically, "exchange instances"). These

exchanges exist when the server starts and cannot be destroyed.

AMQP applications can also create their own exchanges. AMQP does not use a "create" method as such, it
uses a "declare" method which means, "create if not present, otherwise continue". It is plausible that
applications will create exchanges for private use and destroy them when their work is finished. AMQP

provides a method to destroy exchanges but in general applications do not do this.

In our examples in this chapter we will assume that the exchanges are all created by the server at start-up.

We will not show the application declaring its exchanges.

2.1.4 Message Queues

2.1.41 Message Queue Properties

When a client application creates a message queue, it can select some important properties:

¢ name - if left unspecified, the server chooses a name and provides this to the client. Generally, when
applications share a message queue they agree on a message queue name beforehand, and when an

application needs a message queue for its own purposes, it lets the server provide a name

¢ durable - if specified, the message queue remains present and active when the server restarts. It may

lose non-persistent messages if the server restarts

¢ auto-delete - if specified, the server will delete the message queue when all clients have finished using

it, or shortly thereafter.

2.1.4.2 Queue Life-cycles

There are two main message queue life-cycles:

¢ Durable message queues that are shared by many consumers and have an independent existence - i.e.

they will continue to exist and collect messages whether or not there are consumers to receive them

Advanced Message Queuing Protocol Specification v. 0-9 Page 24 of 69

20

21
22
23

24

25

26

27
28
29

30
31
32
33
34
35

36
37

38

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

¢ Temporary message queues that are private to one consumer and are tied to that consumer. When the

consumer disconnects, the message queue is deleted.

There are some variations on these, such as shared message queues that are deleted when the last of many

consumers disconnects.

This diagram shows the way temporary message queues are created and deleted:

Message
Queue
+—————— +
Declare +-—--———- + Message queue is created
———————— > +———————+
o + +—————— +
| Consumer | Consume
| application | --——--——- >
Fom + \ /
Cancel +\\--—-/*
———————— > +--\\//-+ Message queue is deleted
+==//\\-+
+/[-—=-*
/ \

2.1.5 Bindings

A binding is the relationship between an exchange and a message queue that tells the exchange how to route
messages. Bindings are constructed from commands from the client application (the one owning and using

the message queue) to an exchange. We can express a binding command in pseudo-code as follows:

|Queue.Bind <queue> TO <exchange> WHERE <condition>

Let's look at three typical use cases: shared queues, private reply queues, and pub-sub subscriptions.

2.1.5.1 Constructing a Shared Queue

Shared queues are the classic middleware "point-to-point queue”. In AMQP we can use the default exchange
and default binding. Let's assume our message queue is called "app.svcOl". Here is the pseudo-code for

creating the shared queue:

Queue.Declare
queue=app.svc0l
exclusive=FALSE

We may have many consumers on this shared queue. To consume from the shared queue, each consumer

does this:

Basic.Consume
queue=app.svc0l

To publish to the shared queue, each producer sends a message to the default exchange:

Advanced Message Queuing Protocol Specification v. 0-9 Page 25 of 69

10
11
12
13

14

15
16

17
18

19

20
21
22

23

24

25
26

27
28
29

30
31
32

33
34

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

Basic.Publish
routing_key=app.svc0l

2.1.5.2 Constructing a Reply Queue

Reply queues are usually temporary, with server-assigned names. They are also usually private, i.e. read by
a single consumer. Apart from these particularities, reply queues use the same matching criteria as standard

queues, so we can also use default exchange.

Here is the pseudo-code for creating a reply queue, where S: indicates a server reply:

Queue.Declare
queue=<empty>
exclusive=TRUE
auto_delete=TRUE

S:Queue.Create-0k
queue=tmp.1

To publish to the reply queue, a producer sends a message to the default exchange:

Basic.Publish
routing key=tmp.1l

One of the standard message properties is Reply-To, which is designed specifically for carrying the name of

reply queues.

2.1.5.3 Constructing a Pub-Sub Subscription Queue

In classic middleware the term "subscription” is vague and refers to at least two different concepts: the set of
criteria that match messages and the temporary queue that holds matched messages. AMQP separates the

work into into bindings and message queues. There is no AMQP entity called "subscription".
Let us agree that a pub-sub subscription:

¢ holds messages for a single consumer (or in some cases for multiple consumers)

¢ collects messages from multiple sources, through a set of bindings that match topics, message fields, or

content in different ways.

The key difference between a subscription queue and a named or reply queue is that the subscription queue
name is irrelevant for the purposes of routing, and routing is done on abstracted matching criteria rather than

a 1-to-1 matching of the routing key field.

Let's take the common pub-sub model of “topic trees” and implement this. We need an exchange type
capable of matching on a topic tree. In AMQP this is the "topic" exchange type. The topic exchange
matches wild-cards like "STOCK.USD.*" against routing key values like "STOCK.USD.NYSE".

We cannot use the default exchange or binding because these do not do topic-style routing. So we have to

create a binding explicitly. Here is the pseudo-code for creating and binding the pub-sub subscription queue:

Advanced Message Queuing Protocol Specification v. 0-9 Page 26 of 69

© 0O NO O~ WND =

—_
o

11
12

13

14
15
16

17
18

19

20

21

22
23
24
25

26
27

28

29
30

31
32

33
34
35
36

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

Queue.Declare
queue=<empty>
auto_delete=TRUE
S:Queue.Declare-0k
queue=tmp.2
Queue.Bind
queue=tmp.2
TO exchange=amq.topic
WHERE routing_key=STOCK.USD. *

To consume from the subscription queue, the consumer does this:

Basic.Consume
queue=tmp.2

When publishing a message, the producer does something like this:

Basic.Publish
exchange=amq.topic
routing_key=STOCK.USD.IBM

The topic exchange processes the incoming routing key ("STOCK.USD.IBM") with its binding table, and

finds one match, for tmp.2. It then routes the message to that subscription queue.

2.2 AMQ Protocol Command Architecture

This section explains how the application talks to the server.

2.2.1 Protocol Commands (Classes & Methods)

Middleware is complex, and our challenge in designing the protocol structure was to tame that complexity.
Our approach has been to model a traditional API based on classes which contain methods, and to define
methods to do exactly one thing, and do it well. This results in a large command set but one that is relatively

easy to understand.

The AMQP commands are grouped into classes. Each class covers a specific functional domain. Some

classes are optional - each peer implements the classes it needs to support.
There are two distinct method dialogues:

¢ Synchronous request-response, in which one peer sends a request and the other peer sends a reply.

Synchronous request and response methods are used for functionality that is not performance critical

¢ Asynchronous notification, in which one peer sends a method but expects no reply. Asynchronous

methods are used where performance is critical.

To make method processing simple, we define distinct replies for each synchronous request. That is, no
method is used as the reply for two different requests. This means that a peer, sending a synchronous
request, can accept and process incoming methods until getting one of the valid synchronous replies. This

differentiates AMQP from more traditional RPC protocols.

Advanced Message Queuing Protocol Specification v. 0-9 Page 27 of 69

11

12
13
14
15

16

17
18
19
20

21

22

23

24
25

26

27

28
29

30

31

32

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

A method is formally defined as a synchronous request, a synchronous reply (to a specific request), or
asynchronous. Lastly, each method is formally defined as being client-side (i.e. server to client), or server-

side (client to server).

Note: This section does not apply to the request/response transport layer.

2.2.2 Mapping AMQP to a middleware API

We have designed AMQP to be mappable to a middleware API. This mapping has some intelligence (not all
methods, and not all arguments make sense to an application) but it is also mechanical (given some rules, all

methods can be mapped without manual intervention).

The advantages of this are that having learnt the AMQP semantics (the classes that are described in this

section), developers will find the same semantics provided in whatever environment they use.

For example, here is a Queue.Declare method example:

Queue.Declare
queue=my.queue
auto_delete=TRUE
exclusive=FALSE

This can be cast as a wire-level frame:

S frmm e o o T +

| Queue | Declare | my.queue | 1 | 0 |

S frmm e o o T +
class method name autodel excl.

Or as a higher-level API:

queue_declare (session, "my.queue", TRUE, FALSE);

Or as an abstract language:

<queue_declare name = "my.queue" auto_delete = "1"
exclusive = "FALSE" />

There are two main exceptions to making the entire protocol isomorphic with the client API:

¢ Existing API standards, such as JMS, which must be mapped manually onto the AMQP methods.

¢ Those AMQP methods concerned with connection and session start-up and shut-down, which are not

useful to expose in the high-level APL

The pseudo-code logic for mapping an asynchronous method is:

send method to server

The pseudo-code logic for mapping a synchronous method is:

Advanced Message Queuing Protocol Specification v. 0-9 Page 28 of 69

O ©WoONOOO MWD =

—_

11

13

14
15
16
17

18
19

20
21

22

23

24
25

26

27

28

29
30

31
32
33
34
35

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

send request method to server
repeat
wait for response from server
if response is an asynchronous method
process method (usually, delivered or returned content)
else
assert that method is a valid response for request
exit repeat
end-if
end-repeat

It is worth commenting that for most applications, middleware can be completely hidden in technical layers,

and that the actual API used matters less than the fact that the middleware is robust and capable.

2.2.3 No Confirmations

A chatty protocol is slow. We use asynchronism heavily in those cases where performance is an issue. This
is generally where we send content from one peer to another. We send off methods as fast as possible,
without waiting for confirmations. Where necessary, we implement windowing and throttling at a higher

level, e.g. at the consumer level.

We can dispense with confirmations because we adopt an assertion model for all actions. Either they

succeed, or we have an exception that closes the channel or connection.

There are no confirmations in AMQP. Success is silent, and failure is noisy. When applications need

explicit tracking of success and failure, they should use transactions.

Note: This section does not apply to the request/response transport layer.

2.2.4 The Connection Class

AMQP is a connected protocol. The connection is designed to be long-lasting, and can carry multiple

channels.
The connection life-cycle is this:
1. The client opens a TCP/IP connection to the server and sends a protocol header. This is the only data the

client sends that is not formatted as a method.

2. The server responds with its protocol version and other properties, including a list of the security

mechanisms that it supports (the Start method).

3. The client selects a security mechanism (Start-Ok).

4. The server starts the authentication process, which uses the SASL challenge-response model. It sends
the client a challenge (Secure).

5. The client sends an authentication response (Secure-Ok). For example using the "plain”" mechanism, the

response consist of a login name and password.

Advanced Message Queuing Protocol Specification v. 0-9 Page 29 of 69

10

11
12
13
14

15
16

17
18
19

20

21
22
23
24

25

26

27
28
29
30
31

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

6. The server repeats the challenge (Secure) or moves to negotiation, sending a set of parameters such as

maximum frame size (Tune).
7. The client accepts or lowers these parameters (Tune-Ok).
8. The client formally opens the connection and selects a virtual host (Open).
9. The server confirms that the virtual host is a valid choice (Open-Ok).
10.The client now uses the connection as desired.
11.0ne peer (client or server) ends the connection (Close).
12.The other peer hand-shakes the connection end (Close-Ok).

13.The server and the client close their socket connection.

2.2.5 The Channel Class

AMQP is a multi-channelled protocol. Channels provide a way to multiplex a heavyweight TCP/IP
connection into several light weight connections. This makes the protocol more “firewall friendly” since
port usage is predictable. It also means that traffic shaping and other network QoS features can be easily

employed.

Channels are independent of each other and can perform different functions simultaneously with other

channels, the available bandwidth being shared between the concurrent activities.

It is expected and encouraged that multi-threaded client applications may often use a “channel-per-thread”
model as a programming convenience. However, opening several connections to one or more AMQP

servers from a single client is also entirely acceptable.
The channel life-cycle is this:

1. The client opens a new channel (Open).

2. The server confirms that the new channel is ready (Open-Ok).
3. The client and server use the channel as desired.

4. One peer (client or server) closes the channel (Close).

5. The other peer hand-shakes the channel close (Close-Ok).

2.2.6 The Access Class

AMQP's access control model is based on "realms". A realm covers some group of server resources
(exchanges and message queues) managed under a single security policy and access control. Applications
ask for access to specific realms, rather than to specific resources. The server grants access in the form of
"tickets", which the client application then uses accordingly. Tickets expire when the channel is closed, or if

the server's access controls change.

Advanced Message Queuing Protocol Specification v. 0-9 Page 30 of 69

E ¢ I \V)

[8)]

10

11

12

13

14
15

16

17
18
19

20

21

22
23

24

25

26

27

28

29
30

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

The tickets granted in AMQP are not cryptographically secure, they are a memento that the server MAY use
to accelerate access checking. The server MUST NOT trust the ticket. The server MUST always check a
resource is accessible on each action where a ticket is presented. The ticket presented SHOULD be used as

an opportunity for the system to optimise the access check logic.

Client applications MUST treat tickets as opaque data — and MUST NOT make assumptions as to ticket

uniqueness, generation order, repeatability, etc.

The access ticket life-cycle is:

1. The client requests an access ticket for a realm (Request).
2. The server grants it (Request-Ok).

3. The server can, of course, refuse the request.

2.2.7 The Exchange Class

The exchange class lets an application manage exchanges on the server.
This class lets the application script its own wiring (rather than relying on some configuration interface).

Note: Most applications do not need this level of sophistication, and legacy middleware is unlikely to be able

to support this semantic.

The exchange life-cycle is:

1. The client asks the server to make sure the exchange exists (Declare). The client can refine this into,
"create the exchange if it does not exist", or "warn me but do not create it, if it does not exist".
2. The client publishes messages to the exchange.

3. The client may choose to delete the exchange (Delete).

2.2.8 The Queue Class

The queue class lets an application manage message queues on the server. This is a basic step in almost all

applications that consume messages, at least to verify that an expected message queue is actually present.
The life-cycle for a durable message queue is fairly simple:

1. The client asserts that the message queue exists (Declare, with the "passive" argument).
2. The server confirms that the message queue exists (Declare-Ok).
3. The client reads messages off the message queue.

The life-cycle for a temporary message queue is more interesting:

1. The client creates the message queue (Declare, often with no message queue name so the server will

assign a name). The server confirms (Declare-Ok).

Advanced Message Queuing Protocol Specification v. 0-9 Page 31 of 69

10
11

12

13

14
15
16
17

18

19
20

21

22

23
24
25

26

27

28
29
30

31

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

2. The client starts a consumer on the message queue. The precise functionality of a consumer depends on

the content class.
3. The client cancels the consumer, either explicitly or by closing the channel and/or connection.

4. When the last consumer disappears from the message queue, and after a polite time-out, the server

deletes the message queue.

AMQP implements the delivery mechanism for topic subscriptions as message queues. This enables
interesting structures where a subscription can be load balanced among a pool of co-operating subscriber

applications.
The life-cycle for a subscription involves an extra bind stage:

1. The client creates the message queue (Declare), and the server confirms (Declare-Ok).
2. The client binds the message queue to a topic exchange (Bind) and the server confirms (Bind-Ok).

3. The client uses the message queue as in the previous examples.

2.2.9 The Content Classes

Following the principle of placing functional domains into distinct protocol classes that the server may or
may not implement, AMQP also separates content processing into separate classes. The logic is that
different types of content have different semantics. For example, basic messages and file transfer are quite

different problems. We give each content type a class, and a set of methods that work with it.

AMQP currently defines three content classes:

1. Basic contents, which implement standard messaging semantics.
2. File contents, which support file-transfer semantics.

3. Stream contents, which support data streaming semantics.

2.2.9.1 The Basic Content Class

The Basic content class provides a superset of the message properties and functionality required to enable the
implementation of a Java Messaging Service client API which uses AMQP to communicate with any AMQP

server on any platform.
Most of the messaging capabilities described in this specification are enabled by the Basic content class.
The Basic content methods support these main semantics:

¢ Sending messages from client to server, which happens asynchronously (Publish)
¢ Starting and stopping consumers (Consume, Cancel)
¢ Sending messages from server to client, which happens asynchronously (Deliver, Return)

¢ Acknowledging messages (Ack, Reject)

Advanced Message Queuing Protocol Specification v. 0-9 Page 32 of 69

10
11
12
13

14

15

16

17
18

19

20

21

22
23
24
25
26
27

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

¢ Taking messages off the message queue synchronously (Get).

2.2.9.2 The File Content Class

The File content class enables AMQP to perform bulk file transfer in addition to messaging.

The File content class has specific support for restarting incomplete file transfers. We do this by sending file

messages in two steps:
1. The sender uploads the file to the recipient. We call this "staging". If the upload is interrupted, the
sender can recover and send only the missing part of the file.

2. The sender tells the recipient to process the file (e.g. to publish it).

The file content methods support these main semantics:

+ Staging a file, from either peer to the other (Open, Stage)

¢ Sending a staged file from client to server, which happens asynchronously (Publish)

¢ Starting and stopping consumers (Consume, Cancel)

¢ Sending messages from server to client, which happens asynchronously (Deliver, Return)

¢ Acknowledging messages (Ack, Reject).

2.2.9.3 The Stream Content Class

The Stream content class is designed for content streaming (voice, video, etc.) It has these main semantics:

¢ Sending messages from client to server, which happens asynchronously (Publish)
¢ Starting and stopping consumers (Consume, Cancel)

¢ Sending messages from server to client, which happens asynchronously (Deliver, Return)

2.2.10 The Message Class

[WORK IN PROGRESS: see 1.6 Work in Progress]

The Message class is used in conjunction with the request/response transport layer to provide a single API
for both large and small messages that is compatible with high reliability and high availability environments.
In addition to supporting the features present in the other content classes the Message class provides a
symmetric API for message transfer. This allows acknowledgement to be used on message publish as well as
consume. This class will subsume the basic, file, and stream content classes in a future version of the

specification.

Advanced Message Queuing Protocol Specification v. 0-9 Page 33 of 69

o O &

N

10

11
12
13

14

15

16
17

18

19
20
21

22

23

24

25

26
27
28

29

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

2.2.11 The Transaction Class

AMQP supports three kinds of transactions:

1. Automatic transactions, in which every published message and acknowledgement is processed as a stand-

alone transaction.

2. Server local transactions, in which the server will buffer published messages and acknowledgements and

commit them on demand from the client.

3. Distributed transactions, in which the server will synchronise its transactions with an external transaction

coordinator.

The Transaction class (“tx”) gives applications access to the second type, namely server transactions.
The semantics of this class are:

1. The application asks for server transactions in each channel where it wants these transactions (Select).
2. The application does work (Publish, Ack).
3. The application commits or rolls-back the work (Commit, Roll-back).

4. The application does work, ad infinitum.

2.2.12 The Distributed Transaction Class

The distributed transaction class ("dtx") provides simpler semantics because most of the work is done by the

server and external transaction coordinator behind the scenes.
The semantics of this class are as follows:

1. The application asks for server transactions in each channel where it wants these transactions (Select).
2. The application does work (Publish, Ack).
3. AMQP arranges to propagate the global transaction ID.

4. Magic happens.

2.3 AMQ Protocol Transport Architecture

This section explains how commands are mapped to the wire-level protocol.

2.3.1 General Description

AMQP is a binary protocol. Information is organised into "frames", of various types. Frames carry protocol
methods, structured contents, and other information. All frames have the same general format: frame header,

payload, and frame end. The frame payload format depends on the frame type.

We assume a reliable stream-oriented network transport layer (TCP/IP or equivalent).

Advanced Message Queuing Protocol Specification v. 0-9 Page 34 of 69

E ¢ I \V)

[8)]

11

12

13

14

15

16
17

18
19

20

21

22
23
24
25

26

27

28
29

30

31
32

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

Within a single socket connection, there can be multiple independent threads of control, called "channels".
Each frame is numbered with a channel number. By interleaving their frames, different channels share the
connection. For any given channel, frames run in a strict sequence that can be used to drive a protocol parser

(typically a state machine).

We construct frames using a small set of data types such as bits, integers, strings, and field tables. Frame
fields are packed tightly without making them slow or complex to parse. It is relatively simple to generate

framing layer mechanically from the protocol specifications.

The wire-level formatting is designed to be scalable and generic enough to be used for arbitrary high-level
protocols (not just AMQP). We assume that AMQP will be extended, improved and otherwise varied over

time and the wire-level format will support this.

2.3.2 Data Types

The AMQP data types are:

¢ Integers (from 1 to 8 octets), used to represent sizes, quantities, limits, etc. Integers are always unsigned
and may be unaligned within the frame

+ Bits, used to represent on/off values. Bits are packed into octets

Short strings, used to hold short text properties. Short strings are limited to 255 octets and can be parsed

with no risk of buffer overflows
o Long strings, used to hold chunks of binary data
¢ Field tables, which hold name-value pairs. The field values are typed as strings, integers, etc.

¢ [WORK IN PROGRESS] Content, a union of either a reference or inline message body.

2.3.3 Protocol Negotiation

The AMQP client and server negotiate the protocol. This means that when the client connects, the server
proposes certain options that the client can accept, or modify. When both peers agree on the outcome, the
connection goes ahead. Negotiation is a useful technique because it lets us assert assumptions and

preconditions.

In AMQP, we negotiate a number of specific aspects of the protocol:

¢ The actual protocol and version. An AMQP server MAY host multiple protocols on the same port

¢ Encryption arguments and the authentication of both parties. This is part of the functional layer,

explained previously
¢ Maximum frame size, number of channels, and other operational limits.

Agreed limits MAY enable both parties to pre-allocate key buffers, avoiding deadlocks. Every incoming

frame either obeys the agreed limits, and so is "safe", or exceeds them, in which case the other party IS faulty

Advanced Message Queuing Protocol Specification v. 0-9 Page 35 of 69

10

11
12

13

14
15

16
17
18
19
20

21

22

23
24

25
26

27

28
29

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

and MUST be disconnected. This is very much in keeping with the “it either works properly or it doesn't
work at all” philosophy of AMQP.

Both peers negotiate the limits to the lowest agreed value as follows:

¢ The server MUST tell the client what limits it proposes

¢ The client responds and MAY reduce those limits for its connection.

2.3.4 Delimiting Frames

TCP/IP is a stream protocol, i.e. there is no in-built mechanism for delimiting frames. Existing protocols
solve this in several different ways:

¢ Sending a single frame per connection. This is simple but slow

¢ Adding frame delimiters to the stream. This is simple but slow to parse

¢ Counting the size of frames and sending the size in front of each frame. This is simple and fast, and our

choice.

2.3.5 Frame Details

All frames consist of a header (7 octets), a payload of arbitrary size, and a 'frame-end' octet that detects

malformed frames:

0 1 3 7 size+7 size+8
+—————= o e + I +
| type | channel | size | | payload | | frame-end |
+—————= o e + I +
octet short long size octets octet

To read a frame, we:

1. Read the header and check the frame type and channel.
2. Depending on the frame type, we read the payload and process it.
3. Read the frame end octet.

In realistic implementations where performance is a concern, we would use “read-ahead buffering” or

“gathering reads” to avoid doing three separate system calls to read a frame.

2.3.5.1 Method Frames

Method frames carry the high-level protocol commands (which we call "methods"). One method frame

carries one command. The method frame payload has this format:

Advanced Message Queuing Protocol Specification v. 0-9 Page 36 of 69

a b~ oo =

]

10
11
12

13
14

15

16
17
18
19

20

21
22
23
24
25
26

27

28

29
30
31
32
33

34
35
36

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

0 2 4

t—m o e — -

| class-id | method-id | arguments...

t—m o e — -
short short

To process a method frame, we:

1. Read the method frame payload.

2. Unpack it into a structure. A given method always has the same structure, so we can unpack the method
rapidly.

3. Check that the method is allowed in the current context.

4. Check that the method arguments are valid.

5. Execute the method.

Method frame bodies are constructed as a list of AMQP data fields (bits, integers, strings and string tables).
The marshalling code is trivially generated directly from the protocol specifications, and can be very rapid.

2.3.5.2 Content Frames

Content is the application data we carry from client-to-client via the AMQP server. Content is, roughly
speaking, a set of properties plus a binary data part. The set of allowed properties are defined by the content
class, and these form the "content header frame". The data can be any size, and MAY be broken into several

(or many) chunks, each forming a "content body frame".

Looking at the frames for a specific channel, as they pass on the wire, we might see something like this:

[method]
[method] [header] [body] [body]
[method]

Certain methods (such as Basic.Publish, Basic.Deliver, etc.) are formally defined as carrying content. When
a peer sends such a method frame, it always follows it with a content header and zero or more content body

frames.

A content header frame has this format:

0 2 4 12 14

O o O e e -

| class-id | weight | body size | property flags | property list...

O o O e e -
short short long long short remainder. ..

We place content body in distinct frames (rather than including it in the method) so that AMQP may support
"zero copy" techniques in which content is never marshalled or encoded, and can be sent via out-of-band

transport such as shared memory or remote DMA.

Advanced Message Queuing Protocol Specification v. 0-9 Page 37 of 69

10

11
12
13
14
15

16

17

18
19
20
21
22
23
24
25

26
27

28

29

30

31

32

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

We place the content properties in their own frame so that recipients can selectively discard contents they do

not want to process.

Contents can be structured with sub-contents to any level.

2.3.5.3 Qut-of-band Frames

Out-of-band transport can be used in specific high-performance models. Note that this part of the protocol is
speculative because we have not built a working out-of-band prototype. This part of the protocol is a place-

holder rather than a formal proposal.

The principle of out-of-band transport is that a TCP/IP connection can be used for controlling another, faster

but less abstract protocol such as remote-DMA, shared memory, or multicast.

2.3.5.4 Heartbeat Frames

Heartbeating is a technique designed to undo one of TCP/IP's features, namely its ability to recover from a
broken physical connection by closing only after a quite long time-out. In some scenarios we need to know
very rapidly if a peer is disconnected or not responding for other reasons (e.g. it is looping). Since heart-
beating can be done at a low level, we implement this as a special type of frame that peers exchange at the

transport level, rather than as a class method.

2.3.5.5 Request and Response Frames
[WORK IN PROGRESS: see 1.6 Work in Progress]

The request and response frames carry the high level protocol commands (which we call "methods"). Each
request frame carries one command. Every request results in a response to confirm command completion.

These responses may optionally be batched for efficiency. Request frames have the following format:

|z=m=mmmmme== request header ---——--——---——- |

0 8 16 20

o +—————— - o +
| request-id | response-mark | *reserved* | method payload |
o +—————— - o +

long long long long

To process a request the following steps must be taken:

1. Read the request header and method payload.
2. Execute the method.
3. Construct and send a response frame that references the request-id and includes the result if any.

Response frames have the following format:

Advanced Message Queuing Protocol Specification v. 0-9 Page 38 of 69

[oe] NOoO o~ =

_
- O ©

-
N

13

14

15
16

17
18

19
20
21

22

23
24
25
26

27
28

29

30
31
32
33

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

|====mmmmm=== response header --——-—-——-—-——-——- |

0 8 16 20

Fom tom Fm e e +

| response-id | request-id | batch-offset | method payload |

Fom tom Fm e e +
long long long long int

o The request-id field correlates the response to its corresponding request.

¢ An implementation may choose to batch together multiple identical responses to consecutive requests by
referencing a range of requests using the batch-offset field of the response header. This indicates that the

response applies to the inclusive request range: [request-id, request-id + batch-offset]

¢ The response-id field identifies the order in which responses are issued.

2.3.6 Error Handling

AMQP uses exceptions to handle errors. That is:

¢ Any operational error, e.g. message queue not found, insufficient access rights, etc. results in a channel

exception.

¢ Any structural error, e.g. invalid argument, bad sequence of methods, etc. results in a connection
exception.

¢ An exception closes the channel or connection, and returns a reply code and reply text to the client
application. We use the 3-digit reply code plus textual reply text scheme that is used in HTTP and many

other protocols.

2.3.7 Closing Channels and Connections

Closing a channel or connection for any reason - normal or exceptional - must be done carefully. Abrupt
closure is not always detected rapidly, and following an exception, we could lose the error reply codes. The
correct design is to hand-shake all closure so that we close only after we are sure the other party is aware of

the situation.

When a peer decides to close a channel or connection, it sends a Close method. The receiving peer responds

with Close-Ok, and then both parties can close their channel or connection.

2.4 AMQ Protocol Client Architecture

It is possible to read and write AMQP frames directly from an application but this would be bad design.
Even the simplest AMQP dialogue is rather more complex than, say HTTP, and application developers
should not need to understand such things as binary framing formats in order to send a message to a message

queue.

Advanced Message Queuing Protocol Specification v. 0-9 Page 39 of 69

_

17
18
19
20

21
22

23

Copyright (c) 2006. All rights reserved. See Notice and License. General Architecture

The recommended AMQP client architecture consists of several layers of abstraction:

1. A framing layer. This layer takes AMQP protocol methods, in some language-specific format

(structures, classes, etc.) and serialises them as wire-level frames. The framing layer can be
mechanically generated from the AMQP specifications (which are defined in a protocol modelling

language, implemented in XML and specifically designed for AMQP).

. A connection manager layer. This layer reads and writes AMQP frames and manages the overall

connection and session logic. In this layer we can encapsulate the full logic of opening a connection and
session, error handling, content transmission and reception, and so on. Large parts of this layer can be
produced automatically from the AMQP specifications. For instance, the specifications define which
methods carry content, so the logic "send method and then optionally send content”" can be produced

mechanically.

. An API layer. This layer exposes a specific API for applications to work with. The API layer may

reflect some existing standard, or may expose the high-level AMQP methods, making a mapping as
described earlier in this section. The AMQP methods are designed to make this mapping both simple
and useful. The API layer may itself be composed of several layers, e.g. a higher-level API constructed
on top of the AMQP method API.

. A transaction processing layer. This layer drives the application by delivering it transactions to

process, where the transactions are middleware messages. Using a transaction layer can be very
powerful because the middleware becomes entirely hidden, making applications easier to build, test, and

maintain.

Additionally, there is usually some kind of I/O layer, which can be very simple (synchronous socket reads

and writes) or sophisticated (fully asynchronous multi-threaded i/0).

This diagram shows the overall recommended architecture (without layer 4, which is a different story):

Advanced Message Queuing Protocol Specification v. 0-9 Page 40 of 69

O N O~ WN =

DN = — 4 4 a4 4 a4
- O OWoONOOOA~WN-—= OO

22
23
24
25

Copyright (c) 2006. All rights reserved. See Notice and License.

General Architecture

+ ________________________
Application
tm tom
|
+ ________________________
+———| APT Layer
| tm tom
| |
| Bt
| | Connection Manager
| tm tom
| |
| Bt
+-—-| Asynchronous I/0 Layer
tm tom
|
- - - - Network - - - -

+

+

In this document, when we speak of the "client API", we mean all the layers below the application (i/o,
We will usually speak of "the client API" and "the

framing, connection manager, and API layers.

application" as two separate things, where the application uses the client API to talk to the middleware

SErver.

Advanced Message Queuing Protocol Specification v. 0-9

Page 41 of 69

—_

10
11
12

13
14

15
16

17
18
19

20
21
22

23

24
25

Copyright (c) 2006. All rights reserved. See Notice and License. Functional Specification

3 Functional Specification

3.1 Server Functional Specification

3.1.1 Messages and Content

A message is the atomic unit of processing of the middleware routing and queuing system. Messages carry a
content, which consists of a content header, holding a set of properties, and a content body, holding an

opaque block of binary data. Contents can themselves contain child contents, to any level of complexity.
A message can correspond to many different application entities:

¢ An application-level message
¢ A file to transfer

¢ One frame of a data stream

* etc.

AMAQP defines a set of "content classes", each implementing a specific content syntax (the set of content
header properties) and semantics (the methods that are available to manipulate messages of that content

class).

Messages may be persistent, according to the semantics of each class. A persistent message is held securely

on disk and guaranteed to be delivered even if there is a serious network failure, server crash, overflow etc.

Messages may have a priority level, according to the semantics of each class. A high priority message is sent
ahead of lower priority messages waiting in the same message queue. When messages must be discarded in

order to maintain a specific service quality level the server will first discard low-priority messages.

The server MUST NOT modify message content bodies that it receives and passes to consumer applications.
The server MAY add information to content headers but it MUST NOT remove or modify existing

information.

3.1.2 Virtual Hosts

A Virtual Host' is a data partition within the server, it is an administrative convenience which will prove

useful to those wishing to provide AMQP as a service on a shared infrastructure.

' The term Virtual Host is taken from the use popularised by the Apache HTTP server. Apache Virtual Hosts

enable Internet Service providers to provide bulk hosting from one shared server infrastructure. We hope that the
inclusion of this capability within AMQP opens up similar opportunities to larger organisations.

Advanced Message Queuing Protocol Specification v. 0-9 Page 42 of 69

N o o AW

©

11
12

13

14
15
16

17
18

19
20
21

22
23
24

25
26

27

28

29
30
31

Copyright (c) 2006. All rights reserved. See Notice and License. Functional Specification

A virtual host comprises its own name space, a set of exchanges, message queues, and all associated objects.

Each connection MUST BE associated with a single virtual host.

The client selects the virtual host in the Connection.Open method, after authentication. This implies that the
authentication scheme of the server is shared between all virtual hosts on that server. However, the
authorization scheme used MAY be unique to each virtual host. This is intended to be useful for shared
hosting infrastructures. Administrators who need different authentication schemes for each virtual host

should use separate servers.

All channels within the connection work with the same virtual host. There is no way to communicate with a
different virtual host on the same connection, nor is there any way to switch to a different virtual host

without tearing down the connection and beginning afresh.

The protocol offers no mechanisms for creating or configuring virtual hosts - this is done in an undefined

manner within the server and is entirely implementation-dependent.

3.1.3 Exchanges

An exchange is a message routing agent within a virtual host. An exchange instance (which we commonly
call "an exchange") accepts messages and routing information - principally a routing key - and either passes

the messages to message queues, or to internal services. Exchanges are named on a per-virtual host basis.

Applications can freely create, share, use, and destroy exchange instances, within the limits of their

authority.

Exchanges may be durable, temporary, or auto-deleted. Durable exchanges last until they are deleted.
Temporary exchanges last until the server shuts-down. Auto-deleted exchanges last until they are no longer

used.

The server provides a specific set of exchange types. Each exchange type implements a specific matching
and algorithm, as defined in the next section. AMQP mandates a small number of exchange types, and

recommends some more. Further, each server implementation may add its own exchange types.

An exchange can route a single message to many message queues in parallel. This creates multiple instances
of the message that are consumed independently.

3.1.3.1 The Direct Exchange Type

The direct exchange type works as follows:

1. A message queue binds to the exchange using a routing key, K.
2. A publisher sends the exchange a message with the routing key R.

3. The message is passed to the message queue if K =R.

Advanced Message Queuing Protocol Specification v. 0-9 Page 43 of 69

10
11

12

13
14

15

16

17
18
19

20
21

22
23
24

25
26
27

28
29

Copyright (c) 2006. All rights reserved. See Notice and License. Functional Specification

The server MUST implement the direct exchange type and MUST pre-declare within each virtual host at
least two direct exchanges: one named amq.direct, and one with no public name that serves as the default

exchange for Publish methods.

Note that message queues can bind using any valid routing key value, but most often message queues will

bind using their own name as routing key.

In particular, all message queues MUST BE automatically bound to the nameless exchange using the

message queue's name as routing key.

3.1.3.2 The Fanout Exchange Type

The fanout exchange type works as follows:

1. A message queue binds to the exchange with no arguments.
2. A publisher sends the exchange a message.
3. The message is passed to the message queue unconditionally.

The fanout exchange is trivial to design and implement. This exchange type, and a pre-declared exchange

called amq.fanout, are mandatory.

3.1.3.3 The Topic Exchange Type

The topic exchange type works as follows:

1. A message queue binds to the exchange using a routing pattern, P.
2. A publisher sends the exchange a message with the routing key R.
3. The message is passed to the message queue if R matches P.

The routing key used for a topic exchange MUST consist of zero or more words delimited by dots. Each

word may contain the letters A-Z and a-z and digits 0-9.

The routing pattern follows the same rules as the routing key with the addition that * matches a single word,
and # matches zero or more words. Thus the routing pattern *.stock.# matches the routing keys usd.stock and

eur.stock.db but not stock.nasdagq.

One suggested design for the topic exchange is to hold the set of all known routing keys, and update this
when publishers use new routing keys. It is possible to determine all bindings for a given routing key, and so

to rapidly find the message queues for a message. This exchange type is optional.

The server SHOULD implement the topic exchange type and in that case, the server MUST pre-declare

within each virtual host at least one topic exchange, named amg.topic.

Advanced Message Queuing Protocol Specification v. 0-9 Page 44 of 69

10
11

12
13

14
15

16
17
18

19

20
21

22

23

24

25

26
27

Copyright (c) 2006. All rights reserved. See Notice and License. Functional Specification

3.1.3.4 The Headers Exchange Type
The headers exchange type works as follows:

1. A message queue is bound to the exchange with a table of arguments containing the headers to be matched

for that binding and optionally the values they should hold. The routing key is not used.

2. A publisher sends a message to the exchange where the 'headers' property contains a table of names and

values.

3. The message is passed to the queue if the headers property matches the arguments with which the queue

was bound.

The matching algorithm is controlled by a special bind argument passed as a name value pair in the
arguments table. The name of this argument is 'x-match'. It can take one of two values, dictating how the rest

of the name value pairs in the table are treated during matching:

(1) 'all' implies that all the other pairs must match the headers property of a message for that message to be
routed (i.e. and AND match)

(ii) 'any' implies that the message should be routed if any of the fields in the headers property match one of

the fields in the arguments table (i.e. an OR match)

A field in the bind arguments matches a field in the message if either the field in the bind arguments has no
value and a field of the same name is present in the message headers or if the field in the bind arguments has

a value and a field of the same name exists in the message headers and has that same value.
Any field starting with 'x-' other than 'x-match' is reserved for future use and will be ignored.

The server SHOULD implement the headers exchange type and in that case, the server MUST pre-declare

within each virtual host at least one headers exchange, named amq.match.

3.1.3.5 The System Exchange Type

The system exchange type works as follows:

1. A publisher sends the exchange a message with the routing key S.
2. The system exchange passes this to a system service S.

System services starting with "amq." are reserved for AMQP usage. All other names may be used freely on

by server implementations. This exchange type is optional.

Advanced Message Queuing Protocol Specification v. 0-9 Page 45 of 69

11
12
13

14
15

16
17
18

19
20
21

22

23
24

25
26
27

28

Copyright (c) 2006. All rights reserved. See Notice and License. Functional Specification

3.1.3.6 Implementation-defined Exchange Types

All non-normative exchange types MUST be named starting with "x-". Exchange types that do not start with

"x-" are reserved for future use in the AMQP standard.

3.1.4 Message Queues

A message queue is a named FIFO buffer that holds message on behalf of a set of consumer applications.
Applications can freely create, share, use, and destroy message queues, within the limits of their authority.

Note that in the presence of multiple readers from a queue, or client transactions, or use of priority fields, or
use of message selectors, or implementation-specific delivery optimisations the queue MAY NOT exhibit
true FIFO characteristics. The only way to guarantee FIFO is to have just one consumer connected to a

queue. The queue may be described as “weak-FIFO” in these cases.

Message queues may be durable, temporary, or auto-deleted. Durable message queues last until they are
deleted. Temporary message queues last until the server shuts-down. Auto-deleted message queues last

until they are no longer used.

Message queues hold their messages in memory, on disk, or some combination of these. Message queues are

named on a per-virtual host basis.

Message queues hold messages and distribute them between one or more consumer clients. A message
routed to a message queue is never sent to more than one client unless it is is being resent after a failure or

rejection.

A single message queue can hold different types of content at the same time and independently. That is, if
Basic and File contents are sent to the same message queue, these will be delivered to consuming

applications independently as requested.

3.1.5 Bindings

A binding is a relationship between a message queue and an exchange. The binding specifies routing

arguments that tell the exchange which messages the queue should get.

Applications create and destroy bindings as needed to drive the flow of messages into their message queues.
The lifespan of bindings depend on the message queues they are defined for - when a message queue is

destroyed, its bindings are also destroyed.

The specific semantics of the Queue.Bind method depends on the exchange type.

Advanced Message Queuing Protocol Specification v. 0-9 Page 46 of 69

a » WD

10
11

12
13
14

15

16
17

18
19

20
21

22
23
24

25

26
27
28
29

Copyright (c) 2006. All rights reserved. See Notice and License. Functional Specification

3.1.6 Consumers

We use the term "consumer" to mean both the client application and the entity that controls how a specific
client application receives messages off a message queue. When the client "starts a consumer" it creates a
consumer entity in the server. When the client "cancels a consumer" it destroys a consumer entity in the

Server.

Consumers belong to a single client channel and cause the message queue to send messages asynchronously

to the client.

3.1.7 Quality of Service

The quality of service controls how fast messages are sent. The quality of service depends on the type of
content being distributed. For basic messaging, for file transfer, and for streaming, we define different

quality of service semantics.

In general the quality of service uses the concept of "pre-fetch" to specify how many messages or how many
octets of data will be sent before the client acknowledges a message. The goal is to send message data in

advance, to reduce latency.

3.1.8 Acknowledgements

An acknowledgement is a formal signal from the client application to a message queue that it has

successfully processed a message. There are two possible acknowledgement models:

1. Automatic, in which the server removes a content from a message queue as soon as it delivers it to an

application (via the Deliver or Get-Ok methods).

2. Explicit, in which the client application must send an Ack method for each message, or batch of

messages, that it has processed.

The client layers can themselves implement explicit acknowledgements in different ways, e.g. as soon as a
message is received, or when the application indicates that it has processed it. These differences do not
affect AMQP or interoperability.

3.1.9 Flow Control

Flow control is an emergency procedure used to halt the flow of messages from a peer. It works in the same
way between client and server and is implemented by the Channel.Flow command. Flow control is the only
mechanism that can stop an over-producing publisher. A consumer can use the more elegant mechanism of

pre-fetch windowing, if it uses message acknowledgements (which usually means using transactions).

Advanced Message Queuing Protocol Specification v. 0-9 Page 47 of 69

10

11
12

13
14

15

16

17

18

19

20

21
22

23

24

25

26

Copyright (c) 2006. All rights reserved. See Notice and License. Functional Specification

3.1.10 Naming Conventions

These conventions govern the naming of AMQP entities. The server and client MUST respect these
conventions:

¢ User defined exchange types MUST be prefixed by "x-"

& Standard exchange instances are prefixed by "amq."

¢ Standard system services are prefixed by "amq."

¢ Standard message queues are prefixed by "amq."

¢ All other exchange, system service, and message queue names are in application space.

3.2 AMQP Command Specification (Classes & Methods)

3.2.1 Explanatory Notes

The AMQP methods may define specific minimal values (such as numbers of consumers per message queue)

for interoperability reasons. These minima are defined in the description of each class.

Note conforming AMQP implementations SHOULD implement reasonably generous values for such fields,

the minima is only intended for use on the least capable platforms.
The grammars use this notation:

¢ 'S:'indicates data or a method sent from the server to the client

¢ 'C:!indicates data or a method sent from the client to the server

& +term or +(...) expression means 'l or more instances'

¢ fterm or *(...) expression means 'zero or more instances'.

We define methods as being either:

¢ a synchronous request ("syn request"). The sending peer SHOULD wait for the specific reply method,
but MAY implement this asynchronously

¢ asynchronous reply ("syn reply for XYZ")

& an asynchronous request or reply ("async").

3.2.2 C(Class and Method Ids

[This section has been moved to the generated document amgp-xml-spec.odt.]

Advanced Message Queuing Protocol Specification v. 0-9 Page 48 of 69

—_

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

4 Technical Specifications

4.1 IANA Assigned Port Number

The standard AMQP port number has been assigned by IANA as 5672 for both TCP and UDP.

The UDP port will be used in a future multi-cast implementation.

4.2 AMQP Wire-Level Format

421 Formal Protocol Grammar

We provide a complete grammar for AMQP (this is provided for reference, and you may find it more

interesting to skip through to the next sections that detail the different frame types and their formats):

Advanced Message Queuing Protocol Specification v. 0-9 Page 49 of 69

O N O~ WND =

oo b D DD DMDMDDDDOOWWWWWWWWWMNDMNDDMNPDNPDNDNODNDDNDDNODND S 2 2 2D a
A WON—-20O0CONODOAOPRPWN—-20OONODAOPRPWN—-0O0ONODOAOPRPWUN—-LO0OOONOODOGOPNMWN-—=O O

Copyright (c) 2006. All rights reserved. See Notice and License.

amgp

protocol-header
literal-AMQP
protocol-id
protocol-version

protocol-header *amgp-unit

= literal-AMQP protocol-id protocol-version

%d65.77.81.80 ; "AMQP"
%d1.1 ; AMQP over TCP/IP
%d0.11 ; major 0 minor 11

;[request and response are WORK IN PROGRESS]

amgp-unit

method
method-frame
frame-properties
channel
payload-size
method-payload
class-id
method-id
amgp-field

short-integer
long-integer
long-long-integer
short-string
string-char
long-string
timestamp
field-table
field-value-pair
field-name
field-value

signed-integer
decimal-value
decimals
frame-end

content

content-header
header-payload

content-class
content-weight
content-body-size
property-flags

method / oob-method / trace / heartbeat

/ request / response

method-frame [content]

%d1l frame-properties method-payload frame-end
channel payload-size

short-integer ; Non-zero
long-integer

class-id method-id *amgp-field
%x00.01-%xFF . FF

= %x00.01-%xFF.FF

NN

BIT / OCTET / short-integer / long-integer
long-long-integer

short-string / long-string

timestamp

field-table

2*0CTET

= 4*0CTET

8*0CTET

OCTET *string-char
%x01 .. %xFF
long-integer *OCTET
long-long-integer
long-integer *field-value-pair
field-name field-value

; length + content

; length + content

= short-string

N N |

'S"' long-string
'T' signed-integer
'D' decimal-value
'T' timestamp

'F' field-table
'V' void field
4*0CTET

= decimals long-integer

OCTET

= %xCE

%d2 content-header child-content

*content-body

frame-properties header-payload frame-end
content-class content-weight content-body-size
property-flags property-list

OCTET

OCTET

long-long-integer

15*BIT %b0 / 15*BIT %bl property-flags

Advanced Message Queuing Protocol Specification v. 0-9

Technical Specifications

Page 50 of 69

O N O~ WND =

NN MNNDMNDNDMNDMND NN 4 a4 A
O ONOOOPRA, WON 20 OO NOODORAWN OO

w
o

31

32
33

34

35
36

37
38

39
40
41

42

43

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

property-list = *amgp-field

child-content = content-weight*content

content-body = %d3 frame-properties body-payload frame-end

body-payload = *QCTET

oob-method = oob-method-frame [oob-content]

oob-method-frame = %d4 frame-properties frame-end

oob-content = %d5 content-header oob-child-content
*oob-content-body

oob-child-content = content-weight*oob-content

oob-content-body = %d6 frame-properties frame-end

trace = %d7 %d0 payload-size trace-payload
frame-end

trace-payload = *QCTET

heartbeat = %d8 %d0 %d0 frame-end

;[Start WORK IN PROGRESS: see 1.6 Work in Progress]
request = %d9 frame-properties request-id response-mark
request-body frame-end

request-body method-payload

response = %d10 frame-properties response-id request-id
batch-offset response-body frame-end
response-body = method-payload

; [End WORK IN PROGRESS]

We use the Augmented BNF syntax defined in IETF RFC 2234. In summary,

The name of a rule is simply the name itself.

Terminals are specified by one or more numeric characters with the base interpretation of those
characters indicated as 'd' or 'x'.
A rule can define a simple, ordered string of values by listing a sequence of rule names.

non

A range of alternative numeric values can be specified compactly, using dash ("-") to indicate the range

of alternative values.
Elements enclosed in parentheses are treated as a single element, whose contents are strictly ordered.
Elements separated by forward slash ("/") are alternatives.

The operator "*" preceding an element indicates repetition. The full form is: "<a>*element", where
<a> and are optional decimal values, indicating at least <a> and at most occurrences of

element.
A rule of the form: "<n>element" is equivalent to <n>*<n>element.

Square brackets enclose an optional element sequence.

Advanced Message Queuing Protocol Specification v. 0-9 Page 51 of 69

10
11
12
13

14
15
16

17

18

19
20

21

22

23
24
25
26

27

28
29

30
31

32
33
34
35
36

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

4.2.2 Protocol Header

The client MUST start a new connection by sending a protocol header.

This is an 8-octet sequence:

B S T s sttt BEE S

["A'['M'['Q'['P'[1 | 1] 09|

B S T O s B
8 octets

The protocol header consists of the upper case letters "AMQP" followed by:

1. The protocol class, which is 1 (for all AMQP protocols).
2. The protocol instance, which is 1 (for AMQP over TCP/IP).
3. The major version of the protocol, used in accordance with section 1.5.2.

4. The Minor version of the protocol, used in accordance with section 1.5.2.

The protocol negotiation model is compatible with existing protocols such as HTTP that initiate a connection
with an constant text string, and with firewalls that sniff the start of a protocol in order to decide what rules

to apply to it.
An AMQP client and server agree on a protocol and version as follows:

& The client opens a new socket connection to the AMQP server and sends the protocol header.

¢ The server either accepts or rejects the protocol header. If it rejects the protocol header writes a valid

protocol header to the socket and then closes the socket.

¢ Otherwise it leaves the socket open and implements the protocol accordingly.

Examples:
Client sends: Server responds:
AMQP%d1.1.9.1 Connection.Start method
AMQP%d2.0.1.1 AMQP%d1.1.9.1<Close connection>
HTTP AMQP%d1.1.9.1<Close connection>

Guidelines for implementers:

¢ An AMQP server MUST accept the AMQP protocol as defined by class = 1, instance = 1. Conformance
test: amq_wlp_header_01.

¢ An AMQP server MAY accept non-AMQP protocols such as HTTP. Conformance test:
amq_wlp_header_02.

¢ If the server does not recognise the first 4 octets of data on the socket, or does not support the specific
protocol version that the client requests, it MUST write a valid protocol header to the socket, then flush
the socket (to ensure the client application will receive the data) and then close the socket connection.
The server MAY print a diagnostic message to assist debugging. Conformance test:

amq_wlp_header_03.

Advanced Message Queuing Protocol Specification v. 0-9 Page 52 of 69

[2 B¢, |

—_
- O © 00

12

13
14
15
16
17
18
19
20
21
22

23
24

25
26
27

28

29

30
31
32

33
34

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

¢ An AMQP client MAY detect the server protocol version by attempting to connect with its highest
supported version and reconnecting with a lower version if it receives such information back from the

server. Conformance test: amq_wlp_header_04.

4.2.3 General Frame Format

All frames start with a 7-octet header composed of a type field (octet), a channel field (short integer) and a

size field (long integer):

0 1 3 7 size+7 size+8

frm— e o o T e +

| type | channel | size | | payload | | frame-end |

frmm e T T e £ e +
octet short long 'size' octets octet

AMQP defines these frame types:

L 4

Type = 1, "METHOD": method frame.
Type = 2, "HEADER": content header frame.

*

¢ Type =3,"BODY": content body frame.

¢ Type =4, "OOB-METHOD": out-of-band method frame.

¢ Type =5, "OOB-HEADER": out-of-band band header frame.
¢ Type =6, "OOB-BODY": out-of-band body frame.

¢ Type=7,"TRACE": trace frame.

¢ Type =8, "HEARTBEAT": heartbeat frame.

¢ Type =9, “REQUEST”; request frame.

¢ Type =10, “RESPONSE”; response frame.

The channel number is 0 for all frames which are global to the connection and 1-65535 for frames that refer

to specific channels.

The size field is the size of the payload, excluding the frame-end octet. While AMQP assumes a reliable
connected protocol, we use the frame end to detect framing errors caused by incorrect client or server

implementations.
The frame-end octet should always be the hexadecimal value OxCE.
Guidelines for implementers:

o If a peer receives a frame with a type that is not one of these defined types, it MUST treat this as a fatal
protocol error and close the connection without sending any further data on it. Conformance test:

amq_wlp_frame_01.

¢ When a peer reads a frame it MUST check that the frame-end is valid before attempting to decode the

frame. If the frame-end is not valid it MUST treat this as a fatal protocol error and close the connection

Advanced Message Queuing Protocol Specification v. 0-9 Page 53 of 69

w

o o b

10
11
12
13
14

15

16
17
18

19
20

21

22

23

24

25

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

without sending any further data on it. It SHOULD log information about the problem, since this
indicates an error in either the server or client framing code implementation. Conformance test:

amq_wlp_frame_02.

¢ A peer MUST NOT send frames larger than the agreed-upon size. A peer that receives an oversized
frame MUST signal a connection exception with reply code 501 (frame error). Conformance test:

amq_wlp_frame_03'.

4.2.4 Method Payloads

Method frame bodies consist of an invariant list of data fields, called "arguments". All method bodies start

with identifier numbers for the class and method:

0 2 4

o +———— o - -

| class-id | method-id | arguments...

o +———— o - -
short short

Guidelines for implementers:

¢ The class-id and method-id are constants that are defined in the AMQP class and method specifications.
¢ The arguments are a set of AMQP fields that specific to each method.
¢ Class id values from %x00.01-%XEF.FF are reserved for AMQP standard classes.

¢ Class id values from %xF0.00-%xFF.FF (%d61440-%d65535) may be used by implementations for non-
standard extension classes.

4.2.5 AMQP Data Fields

4.2.51 Integers

AMAQP defines these integer types:

¢ Unsigned octet (8 bits).

¢ Unsigned short integers (16 bits).

The design of the protocol assumes that method and header frames may need to be decoded in their entirety
before handling. The implementation must therefore be able to guarantee the required amount of memory and
must therefore be able to impose a limit on the maximum size of these frames. This rules out continuation frames
for these types as well.

Further, as individual connections may negotiate different maximum frame sizes, it is possible for a message to
be published to a broker that can then not be delivered to the intended recipient due to the frame size limitations
of that recipient. In this case the broker must signal a connection exception but should additionally provide an
informative message as to the circumstances that brought this exception about.

Advanced Message Queuing Protocol Specification v. 0-9 Page 54 of 69

10
11

12

13
14

15
16

17
18

19

20
21

22

23
24
25
26

27

28
29

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

¢ Unsigned long integers (32 bits).

¢ Unsigned long long integers (64 bits).

Integers and string lengths are always unsigned and held in network byte order. We make no attempt to
optimise the case when two low-high systems (e.g. two Intel CPUs) talk to each other.

Guidelines for implementers:

¢ Implementers MUST NOT assume that integers encoded in a frame are aligned on memory word

boundaries.

4.2.5.2 Bits

Bits are accumulated into whole octets. When two or more bits are contiguous in a frame these will be
packed into one or more octets, starting from the low bit in each octet. There is no requirement that all the

bit values in a frame be contiguous, but this is generally done to minimise frame sizes.

4.2.5.3 Strings

AMAQP strings are variable length and represented by an integer length followed by zero or more octets of

data. AMQP defines two string types:

¢ Short strings, stored as an 8-bit unsigned integer length followed by zero or more octets of data. Short

strings can carry up to 255 octets of UTF-8 data, but may not contain binary zero octets.

¢ Long strings, stored as a 32-bit unsigned integer length followed by zero or more octets of data. Long

strings can contain any data.

4.2.5.4 Timestamps

Time stamps are held in the 64-bit POSIX time_t format with an accuracy of one second. By using 64 bits

we avoid future wraparound issues associated with 31-bit and 32-bit time_t values.

4.2.5.5 Field Tables

Field tables are long strings that contain packed name-value pairs. The name-value pairs are encoded as
short string defining the name, and octet defining the values type and then the value itself. A field can hold
a long string (type code 'S"), a long signed integer (type code T'), a decimal (type code 'D"), a date and/or time
(type code 'T"), another field table (type code 'F'), or a void type (type code 'V").

Guidelines for implementers:

o Field names MUST start with a letter, '$' or '#' and may continue with letters, '$' or '#, digits, or

underlines, to a maximum length of 128 characters.

Advanced Message Queuing Protocol Specification v. 0-9 Page 55 of 69

o o b

10
11
12
13
14
15

16
17

18

19
20
21

22

23
24
25
26
27

28
29

30
31
32

33

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

¢ The server SHOULD validate field names and upon receiving an invalid field name, it SHOULD signal

a connection exception with reply code 503 (syntax error). Conformance test: amq_wlp_table_O1.
¢ Specifically and only in field tables, integer values are signed (31 bits plus sign bit).

¢ Decimal values are not intended to support floating point values, but rather fixed-point business values
such as currency rates and amounts. They are encoded as an octet representing the number of places

followed by a long signed integer. The 'decimals’ octet is not signed.

¢ A peer MUST handle duplicate fields by using only the first instance.

4.2.5.6 Content
[WORK IN PROGRESS: see 1.6 Work in Progress]

Content is a union between a reference and an inline message body. The first byte discriminates between a
reference and an inline message body. A 0x0 value indicates that a longstr containing the message body

follows. A 0x1 value indicates that a longstr containing the reference follows.

0 1 5 size + 5
frmm e frmm e e +
| discriminator | size | size * OCTET |
frmm e frmm e e +
— octet--—--- — longstr------—-—-—- |

4.2.6 Content Framing

Certain specific methods (Publish, Deliver, etc.) carry content. Please refer to the chapter "Functional
Specifications" for specifications of each method, and whether or not the method carries content. Methods

that carry content do so unconditionally.
Content consists of a list of 1 or more frames as follows:

1. Exactly one content header frame that provides properties for the content.
2. Optionally, one or more child contents. A child content follows the exact rules for a content. Contents
may thus be structured in a hierarchy to any level.
3. Optionally, one or more content body frames.
Content frames on a specific channel are strictly sequential. That is, they may be mixed with frames for

other channels, but no two content frames from the same channel may be mixed or overlapped, nor may

content frames for a single content be mixed with method frames on the same channel.

Note that any non-content frame explicitly marks the end of the content. Although the size of the content is
well-known from the content header (and thus also the number of content frames), this allows for a sender to

abort the sending of content without the need to close the channel.

Guidelines for implementers:

Advanced Message Queuing Protocol Specification v. 0-9 Page 56 of 69

© 0N O,

11
12
13

14
15

16
17

18
19

20
21

22

23
24

25
26
27

28

29

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

¢ A peer that receives an incomplete content MUST raise a connection exception with reply code 501

(frame error). Conformance test: amq_wlp_content_O1.

4.2.6.1 The Content Header

A content header payload has this format:

0 2 4 12 14

t—m F—m Fom e Fm e — -

| class-id | weight | body size | property flags | property list...

t—m F—m Fom e Fm e — -
short short long long short remainder. ..

Guidelines for implementers:

¢ The content class-id MUST match the method frame class id. The peer MUST respond to an invalid
content class-id by raising a connection exception with reply code 501 (frame error). Conformance test:

amq_wlp_content_02.

¢ The weight field may be used in the future to define structure for content. It is at present unused and non-

zero values are reserved for future use.

o The body size is a 64-bit value that defines the total size of the content body'. It may be zero, indicating

that there will be no content body frames.

¢ The property flags are an array of bits that indicate the presence or absence of each property value in

sequence. The bits are ordered from most high to low - bit 15 indicates the first property”.

¢ The property flags can specify more than 16 properties. If the last bit (0) is set, this indicates that a
further property flags field follows®. There are many property flags fields as needed.

¢ The property values are class-specific AMQP data fields.

+ Bit properties are indicated ONLY by their respective property flag (1 or 0) and are never present in the
property list.

The channel number in content frames MUST NOT be zero. A peer that receives a zero channel number

in a content frame MUST signal a connection exception with reply code 504 (channel error).

Conformance test: amq_wlp_content_03.

4.2.6.2 The Content Body

The content body payload is an opaque binary block followed by a frame end octet®:

That is, the sum of the body sizes for the following content body frames.
This is the opposite order from that used in the encoding of bit fields in a method frame

The use of this flag is not strictly necessary for correct decoding of the frame but it does allow the flags to be
separated from the properties themselves without knowing the content class.

Advanced Message Queuing Protocol Specification v. 0-9 Page 57 of 69

10

11
12
13

14

15

16
17

18

19
20

21
22

23

24
25

26

27
28
29

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

The content body can be split into as many frames as needed. The maximum size of the frame payload is

agreed upon by both peers during connection negotiation.
Guidelines for implementers:

¢ A peer MUST handle a content body that is split into multiple frames by storing these frames as a single
set, and either retransmitting them as-is, broken into smaller frames, or concatenated into a single block

for delivery to an application.

4.2.7 Out-Of-Band Frames

The formatting of out-of-band frames follows the same specifications as for normal frames, with the
exception that frame payloads are sent via some unspecified transport mechanism. This could be shared

memory, specialised network protocols, etc.

The actual out-of-band transport used, and its configuration, is specified in the Channel.Open method.

4.2.8 Trace Frames

Trace frames are intended for a "trace handler" embedded in the recipient peer. The significance and

implementation of the trace handler is implementation-defined.
Guidelines for implementers:

¢ Trace frames MUST have a channel number of zero. A peer that receives an invalid trace frame MUST

raise a connection exception with reply code 501 (frame error). Conformance test: amq_wlp_trace_01.

¢ If the recipient of a trace frame does not have a suitable trace handler, it MUST discard the trace frame

without signalling any error or fault. Conformance test: amq_wlp_trace_02.

429 Heartbeat Frames

Heartbeat frames tell the recipient that the sender is still alive. The rate and timing of heartbeat frames is

negotiated during connection tuning.
Guidelines for implementers:

& Heartbeat frames MUST have a channel number of zero. A peer that receives an invalid trace frame
MUST raise a connection exception with reply code 501 (frame error). Conformance test:

amq_wlp_heartbeat_01.

Strictly this is redundant, however it does make debugging both protocol network streams and memory buffers
somewhat easier.

Advanced Message Queuing Protocol Specification v. 0-9 Page 58 of 69

16
17

18

19

20

21
22
23
24
25
26
27

28
29

30
31

32

33
34

35

Copyright (c) 2006. All rights reserved. See Notice and License.

Technical Specifications

¢ If the peer does not support heartbeating it MUST discard the heartbeat frame without signalling any

error or fault. Conformance test: amq_wlp_heartbeat_02.

4.2.10 Request Frames

[WORK IN PROGRESS: see 1.6 Work in Progress]

Request and response frames form a safe transport mechanism for method payloads in high availability and

high reliability environments.

|m===mmmmm=== request header --———-——--——- |

0 8 16 20

e e o e +
| request-id | response-mark | *reserved* | method payload |
e e o e +

long long long long

Every request has a request-id. Each subsequent request must increment this value by one. It is used to

infer ordering, detect duplicate or missing requests, and to correlate requests with responses.

The response-mark indicates the high water mark of processed response ids. Any responses with id less

than the response-mark have been processed.

The method payload is described in section 4.2.4 Method Payloads

4.2.11 Response Frames
[WORK IN PROGRESS: see 1.6 Work in Progress]

A response confirms the completion of one or more requests as well as carrying back any information

resulting from processing the request.

|z=m=mmmmme== response header ---—----—----—- |

0 8 16 20

o o o o +

| response-id | request-id | batch-offset | method payload |

o o o o +
long long long long int

Every response has a response-id. Each subsequent response must increment this value by one. It is used

to infer ordering and detect duplicate or missing responses.
The request-id indicates the request to which this response applies.

If non-zero the batch-offset indicates additional requests to which this response also applies. The full set

of requests to which a response applies are the inclusive range: [request-id, request-id + batch-offset]

The method payload is describe in section 4.2.4 Method Payloads

Advanced Message Queuing Protocol Specification v. 0-9 Page 59 of 69

w

© 0N OBN

11
12

13
14
15

16

17

18
19
20

21

22
23
24
25

26
27

28
29
30

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

4.3 Channel Multiplexing

AMQP permits peers to create multiple independent threads of control. Each channel acts as a virtual

connection that share a single socket:

frames frames frames frames
I I I I +
| channel | channel | channel | channel |
e e e e +
| socket |
e e +

Guidelines for implementers:

¢ An AMQP peer SHOULD support multiple channels. The maximum number of channels is defined at

connection negotiation, and a peer MAY negotiate this down to 1",

¢ Each peer SHOULD balance the traffic on all open channels in a fair fashion. This balancing can be
done on a per-frame basis, or on the basis of amount of traffic per channel. A peer SHOULD NOT

allow one very busy channel to starve the progress of a less busy channel.

4.4 Request/Response

[WORK IN PROGRESS: see 1.6 Work in Progress]

The Request and Response frames form a transport layer for issuing commands between two peers. When
using this layer there are a number of advanced features not available when issuing commands using a

simple Method frame.

4.41 Batching

If the sender supports batching it will issue as many requests as it can before waiting for responses. The
receiver is free to respond individually to each request by issuing a response who's range includes only that
request. If the receiver supports batching it may detect duplicate processing results and issue ranged

responses.

If the sender does not support batching, it is free to issue one request at a time. When used in this mode the

protocol is fully equivalent to a simple synchronous request/response model with in order execution.

A batching sender will keep a table of outstanding requests. When a response is received it will be correlated
to any outstanding request within the range indicated in the response, and that request will be removed from

the outstanding requests table. This layer does not specify a limit to how many requests may be outstanding

It is expected that all but the most simplistic client or server implementation will support several channels active
on each connection simultaneously and that the best implementations will support hundreds of channels in one
connection should a client application require it.

Advanced Message Queuing Protocol Specification v. 0-9 Page 60 of 69

w

- O © 00N O H

—_

12

13
14
15
16
17

18
19
20

21
22
23
24

25

26
27
28

29
30
31
32

33
34
35
36

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

at any given point. The AMQP request model does impose limits through mechanisms like the prefetch

window.

Here is the pseudo code for a batching response handler:

table of outstanding requests
outstanding = RequestTable()

def handle_response(from, to, body):
for request in outstanding:
if from <= request.id <= to:
request.receive_response(body)
outstanding.remove(request)

Here is the pseudo code for non batching request/response interaction:

issue a request and return the response

def execute(request):
write(request)
response = read() # assumes no incoming requests
return response

A request handler MUST respond to ALL processed requests in a timely manner. If you send an individual
request and wait for a response the request handler MUST NOT hold onto that response indefinitely. If you

send multiple requests without waiting the request handler MAY send individual or batched responses.

If a request handler detects multiple incoming requests it is free to choose whatever response strategy will
minimize average response time for the outstanding requests. This could involve sending each response as
soon as the request is processed, or it could involve waiting until several outstanding requests have

completed and issuing a batch response.

4.4.2 Fail Over

Transparent fail over requires re-establishing a broken connection without losing any requests. When a
connection is broken any outstanding requests must be reissued. When this happens, the receiver must

recognize duplicate requests and respond with previously computed results.

The interaction described above requires the sender to hold onto requests until a response is received, and it
requires the receiver to hold onto previously computed responses indefinitely. This is where the
response-mark is used. The sender must fill this field with the high water mark of processed response

ids. The receiver then knows which responses are safe to discard.

It should be noted that if the sender decides to hold the connection open without issuing any further requests,
the receiver will be forced to remember the last batch of responses. In general this should be a small amount
to remember. The design of this layer does not attempt to address this issue and instead depends on the

presence of a heartbeat or ping defined among the legal requests in the next higher layer in the stack.

Advanced Message Queuing Protocol Specification v. 0-9 Page 61 of 69

© 0o N o o A 0N

- A a4 a4
A~ WO D =+ O

15

16
17
18
19
20

21
22
23
24
25

26

27
28
29
30
31

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

4.4.3 Ordering

This layer does not impose any restrictions on the order of execution of requests. It does preserve the order
in which requests are issued, and the recipient of those requests may depend on that order if they so desire.
Requests MAY complete out-of-order and the generated responses may be issued in an arbitrary order
relative to their corresponding requests. This is important because the AMQP semantics involve a mix of
ordered and unordered execution semantics, for example there is no implicit order between messages
published to separate destinations, but order must be preserved between messages published to a single
destination. This also permits heartbeats to be implemented as normal requests since they may be answered

immediately regardless of what other requests are outstanding.

Responses may be processed by the receiving party in any order, but they must be cumulatively
acknowledged via the response-mark carried by each request, e.g. an implementation may process
response n+1 before processing response n, but it may not set the response-mark to n+1 until it has finished
processing n+1, n, and all previous responses. In practice it is expected that implementations will process

responses in order and simply set the response-mark field to the last processed response.

4.4.4 Sequence Numbers

The order in which requests and responses are issued is preserved via a sequence number generated by the
sender. These sequences consist of 8 byte values that increase by one. Requests and responses do not share a
sequence, i.e. request-id and response-id are initialized from separate sequences and therefore may overlap.
In the context of TCP, the request layer as outlined above would operate inside a single channel, e.g. each

channel would have its own request and response sequences.

The scope of sequence numbers never goes beyond the interaction of two peers, e.g. one set of sequence
numbers is used to transfer messages between a publisher and a broker, whereas a different set of sequence
numbers is used between the broker and the consumer. In other words sequence numbers are not globally
unique, they are only unique to a given client/server session. Globally unique message ids are a separate

concept.

4.45 Shared Success Response

The request/response transport allows for response batching and once ratified in a future release will
deprecate basic, file and stream. With the request/response transport the number of response frames issued
during successful operation can be limited by using a generic response where no parameters are returned.
Thus -ok methods which don't return any data in channel, access, exchange, queue, tx, dtx should be replaced

with a single the generic response to make full use of response batching as is done in the message class.

Advanced Message Queuing Protocol Specification v. 0-9 Page 62 of 69

N o oA 0N

(o]

10

11
12

13

14
15
16
17

18

19
20

21

22
23
24

25

26
27
28

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

4.4.6 Changes to other Classes on completion of Work in Progress

The request/response transport allows for response batching, once the message class is fully ratified in a
future release it will replace basic, file and stream. With the request/response transport the number of
response sequences can be limited by using a generic response where no parameters are returned. The -ok
methods which don't return any data in channel, access, exchange, queue, tx, and dtx classes should be
replaced with the generic response system to make full use of response batching as done in the message

class.

The use of “nowait” is also no longer required in the message class, and should be removed on completion of

the Transport SIG's work in progress.

4.4.7 Related Changes still being worked by the SIG

This section is provided with the work in progress on the transport to provide context for what is

coming/being specified for upcoming releases. Due to the nature of the section the text is more narrative.

4.4.71 Channel Flags

Specify channel flags to identify transactionality, fail over capabilities, reliable clients, etc, so that a
connection can be optimized based on the flags used when the channel was opened. Channel flags are
intended to match the life cycle of the channel itself. We will allocate a generous number of bits during

channel negotiation for these and future ones as they get identified.

4.4.7.2 Proxying

Without being able to generically extract the destination from a request it is not possible to usefully proxy

the protocol. The extraction rules need to be specified.

4.4.7.3 Naming/Addressing

Currently there is no way to globally identify exchanges for example to return addresses, for proxying.
Naming/Addressing is related and needed for proxying however not directly related to the request/response

transport.

4.4.7.4 Outstanding Request Window

Currently the prefetch limit forms a kind of outstanding request window between the broker and consumer.
There is room for an analogous concept during publish, i.e. a window controlling the maximum number of

publish requests that the broker will allow to accrue before issuing a response. It may make sense to simply

Advanced Message Queuing Protocol Specification v. 0-9 Page 63 of 69

N o g b

10
11
12
13

14

15

16

17
18
19
20

21

22
23
24
25

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

have a generic outstanding request limit for each direction on a channel. It's possible that setting this window

to 1 could have a similar effect to the No Delay flag for some use cases, e.g. synchronous publish.

4.4.75 No Delay

Because batching implementations may introduce a small delay before responding we may eventually want
to add a flag to requests to indicate that the response should be sent without delay. In general batching
implementations should use an algorithm that is sufficient for all clients. This feature would only be required

by very advanced or highly specialized clients.

4.4.76 Session vs Connection

For some clients (e.g. anything on a laptop) it may be cumbersome to keep a live connection open for the
entirety of their interaction with the broker. For these clients it may be useful to provide support for session
state that spans multiple physical connections. In principal this is similar to fail over except the connection
would be terminated on purpose by the client rather than accidentally due to network outage or server crash.

Also there might be a longer timeout before the session is garbage collected.

4.4.7.7 Lazy Delivery

References allow for lazy delivery, these semantics need to be specified or limited.

4.4.7.8 Content Sections

There is a notion that the content representation should be expanded to allow sections. Each section should
be able to be eager or lazy. This allows RSS style delivery where an article abstract is always included up
front, but the article body must be pulled on demand. This allows for only the sections that a consumer wants
to be transferred to the consumer.

4.4.7.9 Separate Transport Commands

Channel and connection setup/teardown are transport level operations. Unlike other requests (e.g. queue-
declare, queue-bind) they have no meaningful semantics in the context of transactions and replay (fail over).
It would probably make sense to move these requests into a different layer than the requests that do support

transactions and replay.

Advanced Message Queuing Protocol Specification v. 0-9 Page 64 of 69

11
12

13

14

15
16
17
18

19
20

21

22

23

24

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

4.4.710 End to End/Application Acknowledgment

A pub/sub publisher may need to know when all subscribers have actually received a message. Should we
provide this type of acknowledgement. This is most likely not a transport level issue, but been noted as an

use-case that the transport should be able to support.
4.5 Error Handling

451 Exceptions
Using the standard 'exception’ programming model, AMQP does not signal success, only failure.

AMQP defines two exception levels':

1. Channel exceptions. These close the channel that caused the error. Channel exceptions are usually due

to 'soft’ errors that do not affect the rest of the application.

2. Connection exceptions. These close the socket connection and are usually due to 'hard' errors that

indicate a programming fault, a bad configuration, or other case that needs intervention.

We document the assertions formally in the definition of each class and method.

4.5.2 Reply Code Format

We use the IETF standard format for reply codes as described in IETF RFC 821. A reply code uses three
digits, and the first digit provides the main feedback as to whether and how an operation completed. The
second and third digits provide additional information. The reply codes can be processed by client

applications without full knowledge of their meaning.

We use a standard 3-digit reply code. The first digit (the completion indicator) reports whether the request

succeeded or not:

1: Ready to be performed, pending some confirmation.
2: Successful.

3: Ready to be performed, pending more information.

4: Failed, but may succeed later.

The severity of these exceptions may surprise the reader, however it is a requirement of AMQP that the system
either works predictably, or not at all — to this end, fail fast and fail early will have the effect of achieving rapid
convergence in the quality and interoperability of this standard as bugs and incompatibilities will be discovered
quickly and corrected.

Advanced Message Queuing Protocol Specification v. 0-9 Page 65 of 69

10
11

12

13

14

15

16

17

18

19

20

21

22

23
24
25

26

Copyright (c) 2006. All rights reserved. See Notice and License.

Technical Specifications

5: Failed, requires intervention.

6-9: Reserved for future use.

The second digit (the category indicator) provides more information on failures:
0: Error in syntax.

1: The reply provides general information.

2: Problem with session or connection.

3: Problem with security.

4: Problem with implementation.

5-9: Reserved for future use.

The third digit (the instance indicator) distinguishes among different situations with the same

completion/category.

4.5.3 Channel Exception Reply Codes

[This section has been moved to the generated document amgp-xml-spec.odt. |

4.5.4 Connection Exception Reply Codes

[This section has been moved to the generated document amgp-xml-spec.odt.]

o Limitations

The AMQP specifications impose these limits on future extensions of AMQP or protocols from the same

wire-level format:

¢ Number of channels per connection: 16-bit channel number.
¢ Number of protocol classes: 16-bit class id.
¢ Number of methods per protocol class: 16-bit method id.

The AMQP specifications impose these limits on data:

¢ Maximum size of a short string: 255 octets.
¢ Maximum size of a long string or field table: 32-bit size.
¢ Maximum size of a frame payload: 32-bit size.

¢ Maximum size of a content: 64-bit size.

Advanced Message Queuing Protocol Specification v. 0-9

Page 66 of 69

10

11

12
13

14
15
16
17
18
19

Copyright (c) 2006. All rights reserved. See Notice and License. Technical Specifications

¢ Maximum depth of a structured content: unlimited.
¢ Maximum weight of a structured content: 16-bit weight.

An AMQP server or client implementation will also impose its own limits on resources such as number of
simultaneous connections, number of consumers per channel, number of queues, etc. These do not affect

interoperability and are not specified.

4.6 Security

4.6.1 Goals and Principles

We guard against buffer-overflow exploits by using length-specified buffers in all places. All externally-

provided data can be verified against maximum allowed lengths whenever any data is read.

Invalid data can be handled unambiguously, by closing the channel or the connection.

4.6.2 Denial of Service Attacks

AMQP handles errors by returning a reply code and then closing the channel or connection. This avoids

ambiguous states after errors.

It should be assumed that exceptional conditions during connection negotiation stage are due to an hostile
attempt to gain access to the server. The general response to any exceptional condition in the connection
negotiation is to pause that connection (presumably a thread) for a period of several seconds and then to
close the network connection. This includes syntax errors, over-sized data, and failed attempts to
authenticate. The server SHOULD log all such exceptions and flag or block clients provoking multiple

failures.

Advanced Message Queuing Protocol Specification v. 0-9 Page 67 of 69

Copyright (c) 2006. All rights reserved. See Notice and License. Conformance Tests

5 Conformance Tests

o o b~ W

~

11

12

13
14
15

16
17

18
19
20

21
22

23

24

25
26

27

5.1 Introduction

The AMQP conformance tests are designed to verify how far an AMQ Protocol server actually conforms to
the specifications laid out in this document. In principle, every "guideline for implementers"”, or “RULE” in
the protocol's XML specification has a specific test that verifies whether the server conforms or not. In

practice, some of the guidelines are intended for clients, and some are not testable without excessive cost.

The protocol itself cross references test by a logical label from within the protocol XML description, but the

Test Sets will be documented elsewhere as developed and ratified by the AMQ Protocol governing body.

Note that tests do not test performance, stability, or scalability. The scope of the conformance tests is to

measure how far an AMQP server is compatible with the protocol specifications, not how well it is built.
5.2 Design

5.2.1 “Test Sets” group Tests into meaningful capabilities

Because it is difficult for all implementations of the protocol to be at the same stage of completeness or
compliance at all times, the concept of “Test Sets” is used to enable end users to easily identify the capability

claims of a particular client or server implementation.

Test Sets are named groupings of related or commonly used functionality and the collection of tests which

prove that functionality is compliant with some version of the AMQ Protocol.

Hence implementations can claim verifiable compliance with useful subsets of the protocol. In doing so
users can have confidence in the product in question and its interoperability, and product providers can make

rapid, visible, provable progress in delivering their products.

The Test Sets as a whole and the individual tests are designed as assertions. That is, each Test Set or

individual test either succeeds, or exits with an assertion if it failed.

5.2.2 Wire-Level Tests

The wire-level tests check how the server:

1. Accepts the various types of valid data that the wire-level protocol defines, including frames, structured

content, etc.

2. Handles incorrect data, e.g. malformed frames, incomplete content, etc.

Advanced Message Queuing Protocol Specification v. 0-9 Page 68 of 69

10

11

12

13

Copyright (c) 2006. All rights reserved. See Notice and License. Conformance Tests

5.2.3 Functional Tests

The functional tests check how the server:
1. Implements mandatory functionality, which is expressed in the specifications as "MUST" and "MUST
NOT".

. Implements recommended functionality, which is expressed in the specifications as "SHOULD".

. Implements optional functionality, which is expressed in the specifications as "MAY".

. Handles limits, when the client creates excessive numbers of entities such as queues, consumers, etc.

wm A~ W N

. Handles entity life-cycles: that deleted entities properly disappear, etc.

5.3 Test Sets

This section has still to be completed.

End of Document

Advanced Message Queuing Protocol Specification v. 0-9 Page 69 of 69

	1 Overview
	1.1 Goals of This Document
	1.2 Patents
	1.3 Summary
	1.3.1 What is the AMQ Protocol?
	1.3.2 Why AMQ Protocol?
	1.3.3 Scope of AMQ Protocol
	1.3.4 The Advanced Message Queuing Protocol Model (AMQP Model)
	1.3.5 The Advanced Message Queuing Protocol (AMQP)
	1.3.6 Scales of Deployment
	1.3.7 Functional Scope

	1.4 Organisation of This Document
	1.5 Conventions
	1.5.1 Guidelines for Implementers
	1.5.2 Version Numbering
	1.5.3 Technical Terminology

	1.6 Work in Progress

	2 General Architecture
	2.1 AMQ Protocol Model Architecture
	2.1.1 Main Entities
	2.1.1.1 The Message Queue
	2.1.1.2 The Exchange
	2.1.1.3 The Routing Key
	2.1.1.4 Analogy to Email

	2.1.2 Message Flow
	2.1.2.1 Message Life-cycle
	2.1.2.2 What The Producer Sees
	2.1.2.3 What The Consumer Sees
	2.1.2.4 Automatic Mode

	2.1.3 Exchanges
	2.1.3.1 Types of Exchange
	2.1.3.2 Exchange Life-cycle

	2.1.4 Message Queues
	2.1.4.1 Message Queue Properties
	2.1.4.2 Queue Life-cycles

	2.1.5 Bindings
	2.1.5.1 Constructing a Shared Queue
	2.1.5.2 Constructing a Reply Queue
	2.1.5.3 Constructing a Pub-Sub Subscription Queue

	2.2 AMQ Protocol Command Architecture
	2.2.1 Protocol Commands (Classes & Methods)
	2.2.2 Mapping AMQP to a middleware API
	2.2.3 No Confirmations
	2.2.4 The Connection Class
	2.2.5 The Channel Class
	2.2.6 The Access Class
	2.2.7 The Exchange Class
	2.2.8 The Queue Class
	2.2.9 The Content Classes
	2.2.9.1 The Basic Content Class
	2.2.9.2 The File Content Class
	2.2.9.3 The Stream Content Class

	2.2.10 The Message Class
	2.2.11 The Transaction Class
	2.2.12 The Distributed Transaction Class

	2.3 AMQ Protocol Transport Architecture
	2.3.1 General Description
	2.3.2 Data Types
	2.3.3 Protocol Negotiation
	2.3.4 Delimiting Frames
	2.3.5 Frame Details
	2.3.5.1 Method Frames
	2.3.5.2 Content Frames
	2.3.5.3 Out-of-band Frames
	2.3.5.4 Heartbeat Frames
	2.3.5.5 Request and Response Frames

	2.3.6 Error Handling
	2.3.7 Closing Channels and Connections

	2.4 AMQ Protocol Client Architecture

	3 Functional Specification
	3.1 Server Functional Specification
	3.1.1 Messages and Content
	3.1.2 Virtual Hosts
	3.1.3 Exchanges
	3.1.3.1 The Direct Exchange Type
	3.1.3.2 The Fanout Exchange Type
	3.1.3.3 The Topic Exchange Type
	3.1.3.4 The Headers Exchange Type
	3.1.3.5 The System Exchange Type
	3.1.3.6 Implementation-defined Exchange Types

	3.1.4 Message Queues
	3.1.5 Bindings
	3.1.6 Consumers
	3.1.7 Quality of Service
	3.1.8 Acknowledgements
	3.1.9 Flow Control
	3.1.10 Naming Conventions

	3.2 AMQP Command Specification (Classes & Methods)
	3.2.1 Explanatory Notes
	3.2.2 Class and Method Ids

	4 Technical Specifications
	4.1 IANA Assigned Port Number
	4.2 AMQP Wire-Level Format
	4.2.1 Formal Protocol Grammar
	4.2.2 Protocol Header
	4.2.3 General Frame Format
	4.2.4 Method Payloads
	4.2.5 AMQP Data Fields
	4.2.5.1 Integers
	4.2.5.2 Bits
	4.2.5.3 Strings
	4.2.5.4 Timestamps
	4.2.5.5 Field Tables
	4.2.5.6 Content

	4.2.6 Content Framing
	4.2.6.1 The Content Header
	4.2.6.2 The Content Body

	4.2.7 Out-Of-Band Frames
	4.2.8 Trace Frames
	4.2.9 Heartbeat Frames
	4.2.10 Request Frames
	4.2.11 Response Frames

	4.3 Channel Multiplexing
	4.4 Request/Response
	4.4.1 Batching
	4.4.2 Fail Over
	4.4.3 Ordering
	4.4.4 Sequence Numbers
	4.4.5 Shared Success Response
	4.4.6 Changes to other Classes on completion of Work in Progress
	4.4.7 Related Changes still being worked by the SIG
	4.4.7.1 Channel Flags
	4.4.7.2 Proxying
	4.4.7.3 Naming/Addressing
	4.4.7.4 Outstanding Request Window
	4.4.7.5 No Delay
	4.4.7.6 Session vs Connection
	4.4.7.7 Lazy Delivery
	4.4.7.8 Content Sections
	4.4.7.9 Separate Transport Commands
	4.4.7.10 End to End/Application Acknowledgment

	4.5 Error Handling
	4.5.1 Exceptions
	4.5.2 Reply Code Format
	4.5.3 Channel Exception Reply Codes
	4.5.4 Connection Exception Reply Codes

	Limitations
	4.6 Security
	4.6.1 Goals and Principles
	4.6.2 Denial of Service Attacks

	5 Conformance Tests
	5.1 Introduction
	5.2 Design
	5.2.1 “Test Sets” group Tests into meaningful capabilities
	5.2.2 Wire-Level Tests
	5.2.3 Functional Tests

	5.3 Test Sets

